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Two-dimensional materials supporting deep-subwavelength
plasmonic modes can also exhibit strong magneto-optical
responses. Here, we theoretically investigate magnetoplas-
mons (MPs) in monolayer black phosphorus (BP) structures
under moderate static magnetic fields. We consider three
different structures, namely, a continuous BP monolayer, an
edge formed by a semi-infinite sheet, and finally, a triangular
wedge configuration. Each of these structures shows strongly
anisotropic magneto-optical responses induced both by the
external magnetic field and by the intrinsic anisotropy of
the BP lattice. Starting from the magneto-optical conduc-
tivity of a single layer of BP, we derive the dispersion relation
of the MPs in the considered geometries, using a combina-
tion of analytical, semi-analytical, and numerical methods.
We fully characterize the MP dispersions and the properties
of the corresponding field distributions, and we show that
these structures sustain strongly anisotropic subwavelength
modes that are highly tunable. Our results demonstrate
that MPs in monolayer BP, with its inherent lattice ani-
sotropy as well as magnetically induced anisotropy, hold
potential for tunable anisotropic materials operating below
the diffraction limit, thereby paving the way for tailored
nanophotonic devices at the nanoscale. © 2019 Optical
Society of America

https://doi.org/10.1364/OL.44.000554

Surface plasmons [1], collective oscillations of charge-carriers
in conductors or doped semiconductors, possess a remarkable
ability to confine optical fields below the diffraction limit [2],
and thus hold a great potential to bridge the gap between elec-
tronics and photonics [3]. When a static magnetic field is ap-
plied to a plasmonic material, the material’s charge-carriers are
affected by the Lorentz force. The corresponding magneto-
optical response then gives rise to surface magnetoplasmons
(MPs). Compared with surface plasmons, MPs provide extra

tunability, since the plasmonic properties can be tailored by
the applied magnetic field even for a fixed structure, geometry,
and material. In addition, MPs typically exhibit nonreciprocity,
which may be advantageous for routing electromagnetic radi-
ation in the subwavelength regime. Indeed, with appropriate
designs, unidirectional propagation of electromagnetic fields
can be engineered [4,5] by taking advantage of surface MPs.
External magnetic fields can also produce Landau levels and
other quantization effects in graphene nanoribbons and phos-
phorene [6–8]. Although surface plasmons exhibit many allur-
ing properties, these excitations typically suffer from short
lifetimes owing to the inherent losses in metals, which may hin-
der further applications. The emergence of two-dimensional
(2D) materials over the last decade—spearheaded by graphene—
has attracted a vast amount of interest in photonics, as it has the
potential to overcome the shortcomings of traditional metal-
based plasmonics [1,6,9,10]. Graphene can sustain long-lived
plasmons [1,9–11], and 2D plasmonic materials can confine
light in deep subwavelength regimes as a result of their intrinsic
2D property and plasmon dispersion. Very recently, Iranzo et al.
[12] reported extreme plasmon confinement based on a layered
structure consisting of graphene, hexagonal boron nitride, and
a metal grating to squeeze light within the length of a single
layer. Still, and despite its remarkable electronic and optical
properties, realizing graphene-based devices for high-quality
field-effect transistors is challenging due to the absence of a
bandgap. In this context, monolayer black phosphorus (BP)
can provide a moderate bandgap, as well as high electronic
mobility [13]. Single-layer BP has a puckered crystal structure
of phosphorus atoms that gives rise to an in-plane anisotropy
with distinct electron (or hole) effective masses along the high-
symmetry armchair (AC) and zigzag (ZZ) directions—see the
inset in Fig. 1. Its large anisotropy has been demonstrated both
by Raman scattering spectra and photoluminescence mea-
surements [14]. Recent research has also shown that BP-based
field-effect transistors can exhibit outstanding on/off ratios and
relatively high cut-off frequencies at the same time [15]. Other
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potential applications based on BP, such as a heterojunction
p − n diode [16], photovoltaic devices [17], or high responsivity
photodetectors [18], have also been demonstrated.

In this Letter, we investigate theoretically the properties of
MPs supported by monolayer BP structures, including a con-
tinuous BP sheet, an edge formed by a semi-infinite BP plane,
and a triangularly shaped wedge made of single-layer BP. In
particular, we study the systems’ magneto-optical response
and determine the MPs dispersion relation, focusing on how
the plasmonic properties and mode confinement are affected
by the external magnetic field, depending on its strength
and direction with respect to the BP plane(s). Owing to
BP’s lattice anisotropy, we investigate the properties of its
MPs both along the AC and ZZ directions.

Here, the monolayer BP is treated as a strictly 2D material
without thickness, both in our analytical and numerical calcu-
lations. The material’s response is characterized by a frequency-
dependent (surface) conductivity tensor that, in the absence of
an external magnetic field, is of the following form [19]:

σ�ω� � ine2

ω� iγ

�
m−1

xx 0
0 m−1

zz

�
, (1)

where n, e, ω, and γ∕�2π� are, respectively, the carrier-density,
elementary charge, angular frequency, and electronic scattering
rate. The diagonal terms, m−1

xx and m−1
zz , in the magneto-optical

conductivity tensor stand for different effective masses of the
charge-carriers along those directions, which can be oriented
along the AC or ZZ crystal axes—see the inset in Fig. 1.
We note that, contrary to a three-dimensional (3D) bulk mag-
neto-optical material, the monolayer BP only responds to the
component of the magnetic field which is perpendicular to the
material’s surface. In the presence of an applied static magnetic
field, the conductivity tensor of the BP monolayer becomes
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where m� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffimxxmzz
p

is the effective cyclotron mass, ωc �
eB0 · n̂∕m� is the cyclotron frequency, B0 is the (static) external
magnetic field, and n̂ is the unit vector normal to the BP’s sur-
face. Equation (2) is derived within the framework of the
Drude model [1], considering the anisotropy of BP, as well
as the influence of the external magnetic field. With the aniso-
tropic conductivity tensor derived above, we first study the MPs
supported by a continuous BP monolayer sandwiched between
two dielectrics. In the case of a plasmonic 2D material experi-
encing a magnetic field, the presence of the latter effectively
mixes the transverse electric (TE) and transverse magnetic
(TM) modes. The dispersion relation of the 2D MPs in the
BP monolayer then follows from Maxwell’s equations and
corresponding boundary conditions [1]; assuming without loss
of generality a MP propagating along the x-direction, its
dispersion is determined from the solution of�

ε1
κ1

� ε2
κ2

� iσxx
ωε0

�
�κ1 � κ2 − iωμ0σzz� �

μ0
ε0

σ2xz � 0: (3)

Here κl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − εlω2∕c2

p
, with q denoting the 2D MP wave-

vector, and c, ε0, and μ0 denoting the speed of light, permit-
tivity and permeability in vacuum, respectively. Moreover, εl
with l � f1, 2g label the relative permittivities of the cladding
and substrate materials, respectively. It should be noted that the
dispersion relation for a MP propagating along the z-direction
can be obtained by interchanging σxx and σzz in Eq. (3).
Furthermore, notice that the term in the first parentheses is
simply the TM mode dispersion of plasmons in an extended
2Dmaterial in the absence of a magnetic field [1]. On the other
hand, the term enclosed by the second parentheses corresponds
to the dispersion of TE modes. Finally, the last term represents
the Hall conductivity induced by the external magnetic field in
BP. It is therefore clear that the presence of the static magnetic
field mixes TM and TE modes, and, when the former is re-
moved—which means that the Hall conductivity is zero—
Eq. (3) factorizes into the TM and TE plasmon dispersions
[and the conductivity in Eq. (2) reduces to the original tensor
figuring in Eq. (1)].

Figure 1 shows the dispersion relations of MPs in an ex-
tended BP monolayer under different magnetic field strengths
and assuming negligible losses; MP propagation along both the
AC and zigzag ZZ directions is considered. Throughout this
Letter, we consider air to be the dielectric environment �ε1 �
ε2 � 1� and the BP’s carrier-density to be n � 1013 cm−2. For
the electron effective masses, we take mAC � 0.15m0 and
mZZ � 0.7m0 [19], where m0 is the electron rest mass. It is
clear from Fig. 1 that the 2D MPs dispersions lie close to
the light-line for ω ≲ ωc (as an example, ωc � 0.86 THz
for a 10 T magnetic field), after which they start to depart from
it in a similar fashion as the zero-field case. Moreover, notice the
strong anisotropic response: for a MP propagating along the
BP’s ZZ direction, where the electron effective mass is higher,
the group velocity at a given frequency is correspondingly
smaller in comparison to the AC case. On the other hand,
the effect of the magnetic field is stronger in the case where
the MPs propagate along the heavier (ZZ) direction.

The edge and wedge structures made out of 2D materials
can also sustain plasmonic excitations [1,20–22]. However,

(a) (b)

Fig. 1. Dispersion relation of magnetoplasmons in a continuous BP
monolayer. The perpendicular magnetic field is applied along the pos-
itive y-axis. We consider propagation along both the (a) armchair and
(b) zigzag crystallographic directions. The dashed lines indicate the
light-line. The inset depicts a BP monolayer with the armchair and
zigzag directions along the x- and z-axis, respectively.
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the nanostructuring of these beyond the simple, infinite, and
continuous 2D layer complicates the theoretical treatment, and
fully analytical solutions are not straightforward and easy to
obtain. Nevertheless, reliable and rigorous semi-analytical
methods within the nonretarded limit (which often is the
interesting regime for deep subwavelength plasmonics) can
be employed. In what follows, we use both semi-analytical
and numerical methods to study quasi-one-dimensional MPs
traveling along the edge of a semi-infinite BP monolayer.
The quasi-analytical model is based on (scalar) Green’s func-
tions, together with an orthogonal polynomial expansion;
for details, we refer to Refs. [1,20]. This method provides
an accurate and reliable description of surface plasmons, sup-
ported by many different nanostructures and geometries based
on 2D materials [1,20,21]. Our semi-analytical calculations are
then augmented by full-wave numerical computations using
the commercial software COMSOL Multiphysics based on
the finite element method. In the latter, the 2D BP monolayer
is represented as a surface current, characterized by a conduc-
tivity tensor [recall Eq. (2)]. We stress that treating the mono-
layer as a surface current has advantages in terms of
computational time and numerical accuracy when compared
with the traditional volumetric method [23]. The dispersions
of the edge MPs for both AC and ZZ edges are shown in
Fig. 2, for different applied magnetic field strengths and orien-
tations. In both cases, we demonstrate that one may tune the
MP dispersion by controlling the magnetic field strength.
Clearly, our semi-analytical model performs extremely well
in the nonretarded regime, showing remarkable agreement with
the numerical results. In addition, notice that for perpendicular
magnetic fields along the positive (negative) y-direction, a MP
at a given frequency will exhibit higher (smaller) confinement
than the corresponding zero-field edge plasmon. This behavior
can be understood by considering the Lorentz force: for a static
magnetic field oriented along the positive y-direction, the
charge-carriers are pushed toward the edge by the Lorentz force,
which in turn results in a higher mode confinement [24] (and
vice-versa for a magnetic field oriented along the negative
y-direction). The change of the mode confinement discussed

here is consistent with the dispersion shifts in Fig. 2. We fur-
ther stress that MPs propagating along a BP half-plane become
nonreciprocal, as reciprocity is broken by the presence of the
magnetic field. In fact, it is interesting to note that flipping of
the magnetic field, that is, from y → −y, is equivalent to swap-
ping of the propagating direction from along the positive
z-direction to along the negative z-direction, and therefore
(as Fig. 2 shows) the dispersion for edge MPs propagating along
the positive or negative z-direction is not identical. Figures 2(b)
and 2(d) portray the electric field distributions of edge MPs
with opposite magnetic field directions for the AC and ZZ
propagating directions, respectively. Note that MPs propagat-
ing along the ZZ direction have longer tails extending into the
BP half-plane due to a stronger magnetic effect. Although we
have less numerical data for the ZZ case due to the time-
consuming calculation process, the semi-analytical method
can provide reliable results of the dispersion of edge MPs in
the nonretarded regime. Finally, it should be mentioned that
MPs traveling along the edge of a semi-infinite 2D sheet deliver
higher field confinements when compared to its continuous
sheet counterpart (cf. Figs. 1 and 2).

After investigating MPs in flat structures of monolayer BP,
we now consider a nonplanar geometry in which the BP mono-
layer is folded into a wedge structure forming a triangular chan-
nel [21,22,25]. Compared to the plane and edge structures, a
wedge structure composed of a 2D material provides a flexible
way to tune the plasmon mode by the external magnetic field
because the two wedge arms exhibit different responses for a
given external magnetic field. It has been shown that plasmons
in graphene wedges attain odd-symmetry modes (i.e., where
the Ez component has different signs with respect to the line
bisecting the triangular cross section), which can be highly con-
fined near the apex of the wedge [21,22]. Here, we now study
this mode in the case of an anisotropic 2D material, a BP
monolayer, subjected to a static magnetic field. The corre-
sponding wedge MP’s dispersion is plotted in Fig. 3(a) for a
wedge forming a 60° angle. It is apparent from the figure that
in the presence of the magnetic field, the dispersion curve of the
wedge MP moves upward, albeit the observed shift is smaller in

(a) (b)
(c)

(d)

Fig. 2. Edge magnetoplasmons in a monolayer BP half-plane. Dispersion of edge MPs propagating along the armchair (a) and zigzag (c) directions.
The modes propagate along the positive z-direction, and the static magnetic fields are applied along�ŷ, with the BP monolayer lying in the xz-plane
for x < 0; see the inset in (a). In both dispersion panels, the solid lines and the dots represent, respectively, the semi-analytical and numerical results.
The former are shown only within the validity of the nonretarded regime. The light-line (black dashed lines) is also depicted. (b) and (d) show electric
field amplitude distributions at 4 THz for armchair and zigzag directions, respectively. The scale bar corresponds to 0.5 μm. The parameters are
defined in the main text.
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comparison to the edge MP case under the same magnetic field
strength. This can be explained by the fact that only the
perpendicular projection of the magnetic field with respect
to the 2D surface, B0 sin�θ∕2�, drives the magneto-optical
response of the 2D medium. Figure 3(b) shows a sketch of
the wedge structure and the field distribution of the Ez com-
ponent for MPs traveling along the AC direction with a 10 T
static magnetic field applied along the −ŷ direction. The distri-
bution of the Ez component is not symmetric with respect to
the bisecting line of the wedge due to the presence of the ex-
ternal magnetic field. It is difficult to see the asymmetry in
Fig. 3 because the dispersion curve of the wedge MPs is close
to its zero-field counterpart. In the specific case discussed here,
flipping the magnetic field direction will not make any differ-
ence to the dispersion relation. This can be understood from
the fact that only the distributions of charge-carriers of the two
wedge arms are exchanged when the external magnetic field is
swapped, as the external magnetic field is applied along the
symmetry axis (y-axis) of the structure.

In conclusion, we have investigated the magneto-optical re-
sponse and ensuing MPs supported in extended monolayer BP,
edge MPs in a BP half-plane, and in a wedge BP structure. We
have determined the dispersion relations for MPs in a continu-
ous BP sheet analytically and have employed a semi-analytical
method to determine the dispersion relation of quasi-one-
dimensional edge MPs in the half-plane case, which we then
benchmarked against electrodynamic numerical calculations
having obtained an outstanding agreement in the nonretarded
limit. Lastly, we have computed the wedge MP’s dispersion
using numerical means alone. Our results demonstrate that
the introduction of a static external magnetic field can be used
to tune the MP’s dispersion—both by varying the magnetic
field strength and orientation—and the corresponding field
confinement. Furthermore, due to inherent anisotropy of
BP, MPs propagating along the AC and ZZ differ significantly,
with the former MPs attaining larger group velocities when
compared to the latter. In addition, we have shown that MPs
in the BP edge exhibit nonreciprocal behavior owing to the

presence of the magnetic field. Finally, wedge MPs in which
the magnetic field is applied along the line bisecting the tri-
angular cross section show mode distortion in agreement with
the Lorentz force induced by the external magnetic field. Our
results demonstrate that MPs in anisotropic 2D materials pro-
vide enhanced tunability together with nonreciprocity, which
may be explored for controlling electromagnetic radiation be-
low the diffraction limit, thereby providing new opportunities
for designing novel tunable plasmonic devices.
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Fig. 3. (a) MP dispersion relation for a wedge of monolayer BP with
and without an applied magnetic field (oriented along −ŷ). The angle
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respectively. Field distribution for the Ez component of the mode
at 4 THz under a 10 T magnetic field. The scale bar corresponds
to 1 μm. The parameters are defined in the main text.
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