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1. TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY CALCULATION

ρ(x) φ(x′)φ(x′)

χKS(x, x′)
∇ · εLRA

m ∇φ=0

PDL

FIG. 1 (Left) Illustration of TDDFT computation of semi-infinite metal structure excited by an external electric field.
The plasmonic response with quantum effects is described by the Kohn–Sham response function χKS. (Right) The
quantum effects are equivalently represented in classical local-response electrodynamics by an infinitely thin layer of
dipoles that point perpendicularly to the surface.

The time-dependent density-functional theory (TDDFT) computation routine of the free electron system
can be found in Ref. 1. Here, we present the main equations and important terms of our TDDFT calculation
for readers who may not be familiar with the TDDFT. Consider a semi-infinite metal system located
at x < 0 driven by an electrostatic potential φext = eik||·s+k||x in the linear regime, where s = yŷ + zẑ, as
illustrated in the left part of Fig. 1. We are interested in the reflected potential outside the metal region,
which is denoted as Rkseik||·s−k||x, where RKS is the reflection coefficient. RKS can be computed if knowing
the induced electron density ρ with

RKS = −
e

2k||ε0

∫
dxρ(x)ek||x. (1.1)

Employing TDDFT, ρ can be solved by

ρ(x)=
∫

dx′
[
Ξ(x, x′, k||, ω)ρ(x′)−e χKS(x, x′, k||, ω)φext(x′)

]
. (1.2)

Here χKS is the Kohn–Sham response function that is given by

χKS(x, x′, k||, ω) =
2
π4

∫ ∞

0
dq1

∫ ∞

0
dq2

∫ ∞

−∞

∫ ∞

−∞

dq||
f0(εq2,q||−k|| ) − f0(εq1,q|| )
~ω − εq1,q|| + εq2,q||−k||

ψ∗q2(x)ψq1(x)ψ∗q1(x′)ψq2(x′),

(1.3)
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where εq1,q|| = ~2
(
q2

1 + q2
||

)
/2me represents the energy of a single Kohn-Sham orbital, and similarly for

εq2,q||−k|| ; f0 represents the Fermi–Dirac distribution function, which in the zero-temperature limit (adopted
in our calculations) is simply f0 = 1 for ε < EF and f0 = 0 for ε > EF with EF denoting the Fermi
level of the system; ψq1,2 are the eigenfunctions of the Kohn–Sham orbitals, which asymptotically tend
to sin(q1,2x + θq1,2 ) as x→ −∞, and are computed using density-functional theory (DFT) [2]. Here, it is
noted that the jellium approximation of the positive ion background is employed in the DFT and TDDFT
computations. Further, Ξ is

Ξ(x, x′, k||, ω) =

∫
dx′′ χKS(x, x′′, k||, ω)

[
fHartree(x′′, x′, k||) + fxc(x′′, x′)

]
, (1.4)

where fHartree and fxc represent the Hartree and exchange-correlation (xc) kernels, respectively. fHartree and
fxc (adiabatical local-density approximation) are expressed as

fHartree(x, x′′, k||) =
e2

2k||ε0
e−k|| |x−x′′ |, fxc(x, x′′) =

dvHEG
xc

dn
δ(x − x′′), (1.5)

where vHEG
xc represents the xc potential of a homogenous electron gas with a density of n, which here is

chosen to be the Winger’s xc potential [2].

2. DERIVATION OF POLARIZABILITY OF PROJECTED DIPOLE LAYER

Solving Eq. (1.2), we obtain the induced electron density ρ, and subsequently we find the reflection
coefficient RKS with Eq. (1.1). Next, we turn to the projected dipole layer (PDL) which consists of an
infinitely thin dipole layer occupying the metal-air interface. Furthermore, the metal is described by its
bulk permittivity εLRA

m , see Fig. 1. To capture the quantum effects, we will by construction of the PDL
ensure that the equivalent system reproduces the same reflection coefficient RKS as we get from the TDDFT
calculation. This leads to the unique value of the polarizability of the PDL denoted as α, as we explain in
more detail in the following. The electric potentials in the air and metal regions can be expressed as

φair = ek||x + RKS(ω, k||)e−k||x, (2.1)

φmetal = TKSek||x, (2.2)

They are naturally connected by boundary conditions. In particular, without the PDL, the bound-
ary conditions are: (1) the continuity of the normal components of the displacement fields D, i.e.,
∂φair/∂x |x→0+ = εLRA

m ∂φmetal/∂x |x→0− , and (2) the continuity of the parallel components of the electric
fields, i.e, φair| x→0+ = φmetal| x→0− . With the PDL, the first boundary condition is maintained, while the
second boundary condition undergoes a slight modification. As indicated in Sec. 4, the parallel component
of the electric fields are discontinuous across the boundary with

φair| x→0+ − φmetal| x→0− =
PPDL

ε0
= −α(ω, k||)

∂φair

∂x
| x→0+ , (2.3)

where PPDL is the polarization moment of the PDL. With the two boundary conditions, we now have

1 − RKS(ω, k||) = εLRA
m (ω)TKS(ω, k||), (2.4)

1 + RKS(ω, k||) − TKS(ω, k||) = −α(ω, k||)k||[1 − RKS(ω, k||)]. (2.5)

The two equations directly leads to the following expression for the polarizability:

α(ω, k||) =
[1 − RKS(ω, k||)] − εLRA

m [1 + RKS(ω, k||)]
k||εLRA

m (ω)[1 − RKS(ω, k||)]
, (2.6)

which is Eq. (1) in the main text. In Fig. 2, we plot α for both Sodium and Aluminum.
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FIG. 2 (a) α, polarizability of the projected dipole layer for Sodium (left) and Aluminum (right) at different frequencies.
(b) Amplitude of α normalized by its local limit approximation αL for Sodium (left) and Aluminum (right).

3. POLARIZABILITY OF PROJECTED DIPOLE LAYER IN REAL SPACE

For the planar surface, the polarizability of the PDL in real space denoted as αp is given by the inverse
Fourier transform of α with

αp(ω, |s − s′|) =
1

(2π)2

∫ 2π

0
dθ

∫ ∞

0
dk||k||α(ω, k||)eik|| |s−s′ | cos θ,

=
1

2π

∫ ∞

0
dk|| k||α(ω, k||)J0(k|||s − s′|). (3.1)

Here, J0 represents the zeroth order of Bessel function. In Fig. 3, we plot αp at frequencies 0.2ωp
and 0.8ωp for Sodium and Aluminum. To evaluate αp in Eq. (3.1) numerically, we set a cutoff to k|| at
0.45 × 1010 m−1. It is observed that αp is confined like a Gaussian function with the half width at half
maximum (HWHM) around 1 nm. Additionally, we see that the HWHM of αp is larger at 0.8ωp than at
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FIG. 3 The polarizability of the projected dipole layer in real space for Sodium and Aluminum at ω = 0.2ωp and
ω = 0.8ωp.

0.2ωp, and is larger for Sodium than for Aluminium. These observations can be well understood from the
k|| dependence of α shown in Fig. 2.

To generalize αp of the planar surface to a curved surface for an arbitrary structure, we observe that the
HWHM of αp is around 1 nm. This indicates that, if the curved space appears as a flat one in the 1nm
scale, αp can be good approximation for the curved surface. Additionally, the distance |s − s′| should
be interpreted as the length of geodesic between two points, since the concept of geodesic is a direct
generalization of the notion of a ”straight line” to ”curved spaces” [3]. Geodesics on a curved surface
are illustrated in Fig. 4. It is seen that there is usually more than one geodesic, which can travel along
the boundary clockwisely, anti-clockwisely, and also circularly. To define the generalized polarizability
α(ω, s, s′) for a curved surface, we have the following options.

Full-Geodesic Approximation (FGA). Including the contributions of all geodesics for the mathematical
completeness, there is

α(ω, s, s′) =
∑

g

αp(ω, |s − s′|g), (3.2)

where g runs over all geodesics between s and s′, and |s − s′|g represents the length of the geodesic.

Shortest-Geodesic Approximation (SGA). Since αp is a short-range function, the dominated contribu-
tion to Eq. (3.2) is from the term of the shortest path. Thus, we can make the SGA with

α(ω, s, s′) = αp(ω, |s − s′|sg), (3.3)

where |s−s′|sg represents the length of the shortest geodesic. We note that Eq. (3.3) greatly simplifies
Eq. (3.2). As demonstrated later, Eqs. (3.2) and (3.3) give almost the same numerical results for
the structure size down to 2 nm, where the curvature does not spoil the validity of using αp to
construct the general polarizaiblity. Eq. (3.3) is Eq. (2) in the main text, which we use throughout
the numerical examples in the main text.

Additionally, if we neglect the k|| dependence of α by replacing α with αL = α(k = 0), Eqs. (3.2) and
(3.3) can both be simplified to

Local Approximation.

α(ω, s, s′) = αLδ(s − s′). (3.4)
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FIG. 4 Graphic illustrations of the full-geodesic approximation Eq. (3.2) that the polarizability of the projected dipole
layer for a curved surface being the summation of the polarizability of the planner surface of the contributions from all
geodesics. The first term on the right hand side of the equation surrounded by a dashed box indicates the contribution
of the shortest geodesic, which gives the shortest-geodesic approximation Eq. (3.3).

With this approximation, αs becomes a local function, which will greatly simplify our numerics.
However, such approximation is proper only when the large-k|| fields contribute insignificantly to
the plasmon response.

Throughout our numerical examples we rely on Eq. (3.3), i.e., the shortest-geodesic approximation,
due to its accuracy and simplicity. Accordingly, we need to know the length of the shortest path between
two points on the PDL, i.e., |s − s′|sg. For the 2D nanowire, the PDL boundary is a curve. The two points
divide the boundary into two curves, and |s − s′|sg is simply the length of the shorter one. For an arbitrary
3D structure with a curved 2D surface, the finding of the shortest path on the curved surface can be done
by well-developed numerical routines, such as the fast marching algorithm [4]. For a sphere, which we
consider in the main text, |s − s′|sg can be evaluated analytically to give |s − s′|sg = rθ(s, s′), where r is the
radius of the sphere and θ(s, s′) ∈ [0 π] is the angle between two vectors s − o and s′ − o with o being the
origin of the sphere.

4. EQUIVALENT BOUNDARY CONDITION OF PROJECTED DIPOLE LAYER

The presence of the PDL is equivalent to the boundary condition (BC) as presented in the main text.
The derivations are shown in this section. Consider the PDL with an arbitrary shape, and its unit vector of
the surface normal is n̂ pointing toward the air background. The directly radiated electric fields from the
PDL are

E(r) = ω2µ0

∫
ds G(r, s) · PPDL(s)n̂(s), (4.1)

where the dyadic Green’s function G is

G(r, r′) =

[
I +

1
k2∇r∇r

]
g(r, r′), g(r, r′) =

eik|r−r′ |

4π|r − r′|
. (4.2)

For r < s, employing the identity E = (∇ × ∇ × E) /k2 and Eq. (4.1), we have

E(r) =

∫
ds

1
ε0
∇rg(r, s) × [∇s × PPDL(s)n̂(s)] . (4.3)
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FIG. 5 Illustration of an electromagnetic wave interacting with a 2D nanowire surrounded by the PDL denoted as s.
The fields {Hmetal, Kmetal} in the nanowire and the fields {Hair, Kair} relate each other through boundary condition (BC)
a and b as defined in Section 5.

With Eq. (4.3), we wish to study the relation between the electric fields across the boundary s. For this,
we evaluate

lim
η→0+

E
[
s + ηn̂(s)

]
− E

[
s − ηn̂(s)

]
= lim

η→0+

1
ε0

∫
ds′ ∇s

(
g
[
s + ηn̂(s), s′

]
− g

[
s − ηn̂(s), s′

])
×

[
∇s′ × PPDL(s′)n̂(s′)

]
= lim

η→0+

1
ε0

∫
s′→s

ds′
−ηn̂(s)

2π
(
|s − s′|2 + η2)3/2 ×

[
∇s′ × PPDL(s′)n̂(s′)

]
= −

1
ε0

n̂(s) × [∇s × PPDL(s)n̂(s)]

= −
1
ε0
∇sPPDL (s) ,

= −∇s

∫
ds′α(ω, s, s′)n̂(s′) · E

[
s′ + ηn̂(s′)

]
. (4.4)

where the second line is derived based on the observation that the term ∇s
[
g(s + ηn̂s, s′) − g(s − ηn̂s, s′)

]
vanishes in the limit of η→0 except for s′ near s denoted as s′ → s. Finally, we use the definition of the
PDL in the last line. For the magnetic fields, following a similar routine, we find that

lim
η→0+

H
[
s + ηn̂(s)

]
−H

[
s − ηn̂(s)

]
= 0. (4.5)

Eqs. (4.4) and (4.5) indicate that, in a numerical implementation, the contribution of the dipole layer is to
induce a discontinuity of the parallel components (perpendicular with n̂s) across the PDL. Thus, we show
that the presence of the PDL is equivalent to the boundary condition of the discontinuity of the parallel
electric fields. In the electrostatic limit, we have E = −∇φ, which directly simplifies Eq. (4.4) to

φair(s) − φmetal(s) = −

∫
ds′α(ω, s, s′)n̂(s′) · ∇φair(s′). (4.6)

5. GREEN’S FUNCTION SURFACE INTEGRAL METHOD

With the equivalent BC for the PDL, the PDM can be conveniently adapted with well developed
numerical techniques, such as the Green’s function surface integral method (GSIM) [5] or the finite
element method (FEM). Here, we choose the GSIM as the numerical tool, and focus on the 2D nanowire
system with the cross section in the x−y plane incident by an electromagnetic wave with the electric field
polarized in the same plane.

As a starting point, we consider the simple case that a single metallic nanowire imbedded in air/vacuum
as illustrated in Fig. 5. The z-component magnetic fields in the nanowire and the background are denoted
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as Hmetal and Hair, respectively, which have the following integral representations

Hmetal(r) = H0
metal(r) −

∫
ds Gmetal(r, s)Kmetal(s) + Mmetal(r, s)Hmetal(s), (5.1a)

Hair(r) = H0
air(r) +

∫
ds Gair(r, s)Kair(s) + Mair(r, s)Hair(s). (5.1b)

Here, K(s) = n̂(s) · ∇H(s), and M(r, s) = n̂(s) · ∇G(r, s). H0
metal and H0

air are the magnetic fields radiated
by the sources in the nanowire and the background, respectively. Gmetal and Gair are the scalar Green’s
functions of the nanowire and background, respectively, and they are

Gmetal(r, s) =
iH(1)

0 (kmetal|r − s|)
4

, Gair(r, s) =
iH(1)

0 (kair|r − s|)
4

, (5.2)

with kmetal and kair representing the wave numbers of the corresponding media. H(1)
0 is the zeroth-order

Hankel function of the first kind. The fields {Hmetal, Kmetal}, and {Hair, Kair} at the boundary determine the
fields of the whole system, and need to be solved. For this, we require the boundary conditions to connect
fields in different media

a. Continuity of the parallel magnetic fields:

Hmetal(s) = Hair(s). (5.3a)

b. Discontinuity of the parallel electric fields Eq. (4.4):

Kair(s)
εair

−
Kmetal(s)
εmetal

= ∇s ·

∫
ds′α(ω, s − s′)∇s′Hair(s′), (5.3b)

where εmetal and εair represent the permittivities of the nanowire and the air background.

Thus, the fields at the boundary can be determined with

(1 + Mmetal)Hmetal + GmetalKmetal = H0
metal, (5.4a)

(1 − Mair)Hair + GairKair = H0
air, (5.4b)

Hmetal = Hair, (5.4c)
Kair

εair
−

Kmetal

εmetal
= DsαDsHair, (5.4d)

where matrix notation is adopted, and Ds is the matrix representation of ∇s. Here, it is noted that the
singularities of Mmetal(r, s) and Mair(r, s) as r → s contribute ∓1/2δ(r − s), respectively, to the integral
equations.

Neglecting the retardation effects, i.e., in the electrostatic limit, we focus on the electric potentials
instead of the magnetic fields. Accordingly, Eqs. (5.4a)-(5.4d) need a slight modification with

(1 + M)φmetal + Gψmetal = φ0
metal, (5.5a)

(1 − M)φair + Gψair = φ0
air, (5.5b)

εmetalψmetal = εairψair, (5.5c)
φair − φmetal = −αψair, (5.5d)

where φ represents the electric potential, and ψ = n̂·∇sφ; G(r, s) = − ln(|r−s|)/2π, and M(r, s) = n̂(s)·∇sG.
Similarl as in the case with retardation, the singularity of M as r→ s contributes ∓1/2δ(r−s) to Eqs. (5.5a)
and (5.5b), respectively. The above equations can be straightforwardly generalized to an arbitrary number
of nanowires [5], and also to the three-dimensional (3D) case [6].

In the main text of the mansucript, the GSIM is employed to compute the plasmonic sturcutres for
the PDM, and the agreements between the PDM and the TDDFT are shown. Here, we consider a dimer
structure of two equilateral triangle nanowires excited by electric field polarized along the gap. The
side length of the triangle is 24 nm with the vertex rounded by the circular arc with a 5.2 nm radius,
and the gap between two nanowires is again 0.74 nm. The ploarizaiblity of the PDL is evaluated within
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FIG. 6 Extinction cross section of the dimer structure of composed two equilateral triangle shaped nanowires for
Sodium and Aluminum predicted by PDM and LRA in the electrostatic limit. The equilateral triangle has a side length
of 24 nm with the vertex rounded by the circular arc with a 5.2 nm radius,, and the gap distance is 0.74 nm.

the shortest-geodesic approximation. The metal bulk permittivity is described by the Drude model
εLRA

metal = 1 − ω2
p/ω(ω + iγ) with γ = 0.027ωp for the LRA, and γ = 0.014ωp for the PDM. The extinction

cross sections for Sodium and Aluminum in the electrostatic limit are plotted in Fig. 6. By comparing the
PDM and LRA results, we show that the quantum effects redshift the plasmon resonance frequency due to
the spill-out, and also broaden the plasmon resonance width due to the electron-hole excitations near the
surface. We notice that the the resonance broadening of Aluminum is wider than that of Sodium, which
can be understood from Fig. 2 by comparing imaginary parts of α for Sodium and Aluminum.

6. LOCAL APPROXIMATION, SHORTEST GEODESIC APPROXIMATION, AND FULL GEODESIC
APPROXIMATION

In Section 3, we introduce three level approximations for evaluating the real space ploarizability α of
a curved surface. Here, we check their validity for predicting the plasmonic response. For brevity, we
denote the PDM with the local approximation (LA) as [PDM]LA, the PDM with the shortest geodesic
approximation (SGA) as [PDM]SGA, and the PDM with the full geodesic approximation as PDMFGA.

Fig. 7 shows the extinction cross-section of the Sodium cylindrical wire with radius 4.9 nm and the
corresponding dimer with gap distance 0.74 nm, comparing results for [PDM]LA, [PDM]SGA, [PDM]FGA,
LRA, TDDFT, and GNOR [7]. The single nanowire spectra of [PDM]LA, [PDM]SGA, [PDM]FGA show
good agreements, and predict the surface plasmon (SP) resonance close to the TDDFT value, and redshifted
with respect to the LRA. For the dimer case, the spectra of [PDM]SGA, [PDM]FGA, and TDDFT agree
each other, but as expected not with [PDM]LRA. The latter fact is due to the excitation of the high
momentum-fields confined at the gap center, whose quantum effects are not well-captured by [PDM]LA.
The agreements between [PDM]SGA and [PDM]FGA indicate the dominant contribution to the PDL
polarizability from the shortest geodesic. Additionally, we checked similar cases as above but with the
cylinder radius down to 2 nm, and also find almost perfect agreements between [PDM]SGA and [PDM]FGA.
In the main text and the following, [PDM]SGA is employed, and is refereed to PDM for simplicity.

Remarks on GNOR. In Fig. 7, the results based on the GNOR are also included. Here, the GNOR
includes the hydrodynamic nonlocal response and also the dissipative diffusion current as a means to
qualitatively account for the surface scattering of the electrons. It is seen that the GNOR predicts the
resonance blueshift with respect to the LRA results. While this is a common feature for noble metals,
Sodium exhibits a redshift. Indeed, the blueshift in the GNOR results for Sodium contradicts the redshift
that we observe with TDDFT and consequently also with the PDM. This is due to the neglect of the
electron spill-out in the GNOR where electron confinement is treated in a hard-wall approximation. Thus,
for Sodium and similar simple metals, where the electron spill-out effect is important, the GNOR is
inappropriate [8; 9]. For the noble metals, for which the centroid of the induced charge at the plasmon
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FIG. 7 Extinction properties of the Sodium cylindrical wire with radius 4.9 nm and the corresponding dimer with
gap distance 0.74nm predicted [PDM]LA, and [PDM]SGA, and PDM. The TDDFT, LRA, and GNOR results are also
included.

resonance resides inside the metal surface, the GNOR is on the other hand in a good agreement with the
experimentally observed blueshift [10; 11].

7. COMPUTATION TIME AND ACCURACY

In Section 5, we show that the numerical computation of the PDM is similar to the approach used for
the classical LRA, except for the modified boundary condition associated with the parallel electric field.
This indicates that the computation of the PDM can be just as efficient as for the LRA. To illustrate this,
we consider the example of a Sodium cylindrical dimer with radius 20 nm and gap 0.6 nm interacting
with a uniform electric field along the gap. For our comparison we compute the extinction spectra. The
probing frequency is chosen to be between 2 eV and 4.5 eV with 100 sampling points. In Fig. 8, we plot
the mesh number of the boundary (in steps of 100) versus the run time, and also the mesh number versus
the average relative error (ARE) for the LRA and PDM (within the shortest-geodesic approximation). The
ARE at step n is defined as

ARE(n) ≡
∑N

i=1 [σn(ωi) − σn−1(ωi)] /σn(ωi)
N

, (7.1)

where σ represents the extinction cross section. It is observed that the computational behaviors of the
LDA and PDM are qualitatively similar, even though the run time of the PDM is slightly longer than for
the LRA.

8. GAP EFFECTS

The PDM considers the quantum effects of a single metal surface. For the dimer structure with a narrow
gap, which supports interactions between two systems at quantum-wavefunction level, the gap effects are
important, but not included in the PDM. To overcome this disadvantage, a simple way is to treat the gap
as an effective medium with a permittivity characterizing the average electric response of the gap. The



10

 

 

PDM

LRA
R
u
n
T
im

e
[M

in
u
te
]

Mesh Number

200 400 600 800 1000

0

1

2

3

4

5

 

 

PDM

LRA

A
R
E
[%

]

Mesh Number

200 400 600 800 1000

0

5

10

15

FIG. 8 Run time and the average relative error (for the extinction cross section) versus the mesh number for both the
LRA and the PDM in the case of a e Sodium cylindrical dimer with radius 20 nm and gap 0.6 nm interacting with a
uniform electric field along the gap.
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h̄ω h̄ω

e-h Forward

FIG. 9 Illustration of electron scattering by the gap between two metallic planar surfaces. Electron-hole excitations
are permitted in both backward and forward directions. V0 and V1 exp(−iωt) represent the ground state and external
dynamic perturbative potential enegies, respectively.

approach was first introduced by the quantum corrected model (QCM) [12], which assumes that the gap
permittivity holds a Drude form with the dissipation associated with a DC tunneling conductivity. The
QCM has been successful in reproducing the gap phenomena numerically, such as the degeneration of the
plasmon field enhancement and the emergence of the charge transfer plasmon. Its physical foundation
that the quantum tunneling dominates the gap response is not justified, especially the tunneling concept is
not well defined for the narrow gap case (below 3 Ångstrom for Sodium). Thus, to get the transparent
understanding of the gap effects, in the main part of the paper, we offered an unambiguous extraction of
the effective gap permittivity directly from TDDFT calculations, and extracted microscopic insights. Here,
we present more technical details, and make some extended discussions.

8.1. Electron-Hole Excitations

When one investigates the electron response of a system, one basically looks for the real and imaginary
parts of the permittivity. The latter relates with the loss, or more specifically with the electron-hole (e-h)
excitations in our interested free electron system. It is therefore important to know how the gap participates
in the e-h excitations. For this, we take the simple model of a vacuum gap formed between two parallel
planar metal surfaces , as illustrated in Fig. 11. The excitation is a uniform electric field. Considering an
electron state propagating from the left towards the gap junction seen in Fig. 11, the state will be scattered
by the equilibrium (ground state) static potential denoted as V0, and also obtain the chance to cause e-h
excitations due to the dynamic perturbation V1 exp(−iωt). Basically, the e-h excitations can be divided
into two types:
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FIG. 10 Graphic illustration of notations ψ{L,R}
{0,1},k used for extracting e-h backward and forward scatterings.

1. e-h backward scattering indicating that the excited electron state propagates in the opposite direction
of the incident state.

2. e-h forward scattering indicating that the excited electron state propagates in the same direction
of the incident state. In the large (relative to the work function scale) gap case, the e-h forward
scattering includes the contribution from the QT if the dynamic energy ~ω is smaller than the work
function, and also the photo-electric effect when ~ω is larger than the work function.

To quantitatively identify the contributions from the e-h backward and forward scatterings, we first
introduce the notations ψ{L,R}

{0,1},k for the Kohn–Sham orbitals with the physical meaning illustrated in Fig. 10.
In particular, the subscripts ”0” and ”1” represent the states below and above the Fermi level, respectively,
the subscript ”k” represents the wavenumber of the state inside the bulk, and the superscripts ”L” and ”R”
represent the states propagating left and right, respectively. ψ{L,R}

{0,1},k is normalized by〈
ψD

i,k |ψ
D′
i′,k′

〉
= δ(k − k′)δi′

i δ
D′
D , (8.1)

where i, i′ ∈ {0, 1}, D,D′ ∈ {L,R}, and 〈A|B〉 ≡
∫ ∞
−∞

A∗(x)B(x)dx. We note that, in classical electrody-
namics (excluding the exchange-correlation interactions), the dissipative power per unit area due to the
induced current is given by

Pdisp =
1
2

Re 〈E1|J1〉 , (8.2)

where E1, J1, represent the electric field, induced electron charge current, and induced electron density,
respectively, and Vsc

1 represents the self-consistent electric potential energy including both the external
incipient one V1 exp(−iωt) and also the induced one from n1. The second line of Eq. (8.2) is derived by
using the charge conservation law and also integration by parts. Including the exchange-correlation effects
within the TDDFT, Eq. (8.2) can be generalized by simply including the exchange-correlation potential
in Vsc

1 . Employing the linear response theory with the equilibrium Green’s function technique [13], the
microscopic expression of Eq. (8.2) is obtained

Pdisp =
meω

8π~2

∫ kF

kc

dk0
k2

F − k2
0

k1


〈(
ψR

1,k1

)∗
|Vsc

1 |ψ
R
0,k0

〉2
+

〈(
ψL

1,k1

)∗
|Vsc

1 |ψ
L
0,k0

〉2︸                                                  ︷︷                                                  ︸
e−h Backward

+
〈(
ψR

1,k1

)∗
|Vsc

1 |ψ
L
0,k0

〉2
+

〈(
ψL

1,k1

)∗
|Vsc

1 |ψ
R
0,k0

〉2︸                                                  ︷︷                                                  ︸
e−h Forward


+

meω

8π~2

∫ kc

0
dk0

k2
1 − k2

0

k1


〈(
ψR

1,k1

)∗
|Vsc

1 |ψ
R
0,k0

〉2
+

〈(
ψL

1,k1

)∗
|Vsc

1 |ψ
L
0,k0

〉2︸                                                  ︷︷                                                  ︸
e−h Backward

+
〈(
ψR

1,k1

)∗
|Vsc

1 |ψ
L
0,k0

〉2
+

〈(
ψL

1,k1

)∗
|Vsc

1 |ψ
R
0,k0

〉2︸                                                  ︷︷                                                  ︸
e−h Forward


(8.3)

where kc is defined by ~2k2
c/2me +~ω = EF, and k1 relates to k0 by ~2k2

1/2me = ~2k2
0/2me +~ω. In Eq. (8.3),

the backward and forward scattering contributions are split in a manner to make the corresponding terms
agreeing with the far field (deep inside the bulk metal) amplitudes of the backward and forward excited
states. In the limiting case of an infinitely large gap, Eq. (8.3) just describes the e-h excitations of the
single interface.
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FIG. 11 Backward scattering proportion for two parallel planer Sodium interfaces with a varying vacuum gap.

Considering Sodium, we plot the backward scattering proportion (BSP), and also the forward scattering
proportion (FSP) for different gap distances in Fig. 11. The results in Fig. 11 demonstrates the complicated
behaviors of the gap related e-h excitations, and suggest the necessity of the full TDDFT extraction of gap
permittivity, which we discuss in the main part of the paper.

The QCM attributes the total e-h excitations to the QT. With the implications of Fig. 11, we conclude
that the QCM gives a qualitatively correct account for the damping under the following conditions: (1) the
gap distance is in the range of 3-5 Å, where the backward scattering becomes relatively small and (2) the
energy is smaller than the work function associated with an insolated interface (3.06 eV for the Sodium
interface), since the high energy belongs to the regime of the photo-electric effect. However, the QCM is
only qualitatively correct as the assumed Drude form conflicts the detailed dynamics of the gap as we
have unraveled by TDDFT as seen in Fig. 13. For the gap distance below 3 Å, the tunneling picture is
not physically sound, and the back scattering turns to increase. As a result, the response turns Drude-like,
which is accidentally the character of the QCM too. In this regime, the emergence of the charge transfer
plasmon is simply a manifestation of the vacuum gap to a Drude-like conductive gap due to the spill-out
of the equilibrium electron density, and the e-h excitations are simply due to the scattering of the electron
with the impurity of the junction. We believe that our new insight from TDDFT solves the controversy
of the QCM; it gives reasonable numerical results because (1) the Drude permittivity becomes valid, (2)
the dissipation in this regime is included by the interpolation of the large gap dissipation with choosing a
physical limiting value that the damping approaches zero as the gap vanishes [12].
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FIG. 12 Effective permittivity of Sodium-vacuum-Sodium structure predicted by the TDDFT for different gap
distances.

8.2. Gap Permittivity

Based on the spatial information provided by the TDDFT calculations, we define the effective local
permittivity εeff(r) by εeff(r) = D(r)/[ε0E(r)]. In Fig. 12, εeff for different gap distances are plotted. The
TDDFT extracted mid-gap permittivity εgap for gap distances from 5 to 0.5 Å are demonstrated in Fig. 13.
The non Drude–Drude transition are clearly observed as the gap is decreasing. For the gap distances of 1Å
and 0.5Å, we cast the εgap into the Drude form, and extract the damping rate. It is found that the damping
rate decreases as the frequency is increases, and also the 0.5Å gap case has a smaller damping rate.

8.3. Projected-Dipole Gap Model

Treating the gap as an effective medium with permittivity from the TDDFT calculations of a planar
dimer in sprit close to the QCM, and also including the single interface quantum effects by the PDM, the
proposed model is referred to as a Projected-Dipole Gap Model (PDGM). To illustrate the validity of
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distances decreasing from 5 Å to 0.5 Å. (b) Damping rate of the gap permittivity predicted by the TDDFT and QCM
for gap distances 1 Å and 0.5 Å.

the PDGM, the planar Sodium dimer is investigated. The evolution of the (charge) anti-symmetric gap
plasmon resonance energy and its width as a function of the gap distance for the wavenumbers 0.1kF and
0.1kF is plotted in Fig. 14. Overall, the plasmon energy redshifts and the resonance broadens as the gap is
reduced. The main observations are: (1) for gaps above 6 Å, the results predicted by the PDGM PDM, and
the TDDFT coincide; (2) for gaps below 6 Å, the PDGM and TDDFT are in mutual good agreement, while
the simple PDM does handle the emerging wavefunction overlap appropriately; (3) when the separation
is below 2Å (grey-shaded region), the plasmon mode continues to exist within the PDM (this being an
artifact of the independent-surface approximation), while it is short circuited by a Drude-like conductive
current inside the gap region, as predicted by TDDFT and correctly captured by PDGM.
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9. NEAR-FIELD PROPERTIES

In this section, we discuss the performance of the PDM and also the PDGM for predicting the near-field
properties of the plasmonic structures. For illustrations, we consider the Sodium cylindrical dimer with
radius 4.9 nm and gap distance varying from 1 Å to 10 Å. The incident electric field is along the gap. We
plot the field enhancement (FE) at the gap center contrasting LRA, PDM, and PDGM results in Fig. 15.
Clearly, the LRA completely fails to predict the FE due to the neglect of the quantum effects. The PDM
and PDGM both exhibit the saturation of the FE, even though the PDM slightly overestimates the FE for
the gap distance below 5 Å owing to the neglect of the gap dynamics as discussed in Section 8. Comparing
with the TDDFT results as presented in Fig. 5 of Ref. 14, we see that the PDGM and TDDFT are in
almost perfect agreement, while the PDM and TDDFT agree for gap distances larger than 5 Å where the
gap is vacuum like.
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