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Abstract
Motivated by the ongoing debate about nanophotonic control of Förster resonance energy transfer
(FRET), notably by the local density of optical states (LDOS), we study FRET and spontaneous
emission in arbitrary nanophotonicmediawithweak dispersion andweak absorption in the frequency
overlap range of donor and acceptor. This system allows us to obtain the following two new insights.
Firstly, we derive that the FRET rate only depends on the static part of theGreen function.Hence, the
FRET rate is independent of frequency, in contrast to spontaneous-emission rates and LDOS that are
strongly frequency dependent in nanophotonicmedia. Therefore, the position-dependent FRET rate
and the LDOS at the donor transition frequency are completely uncorrelated for any nondispersive
medium. Secondly, we derive an exact expression for the FRET rate as a frequency integral of the
imaginary part of theGreen function. This leads to very accurate approximation for the FRET rate that
features the LDOS that is integrated over a huge bandwidth ranging from zero frequency to far into the
UV.We illustrate these general results for the analyticmodel systemof a pair of ideal dipole emitters—
donor and acceptor—in the vicinity of an idealmirror.We find that the FRET rate is independent of
the LDOS at the donor emission frequency.Moreover, we observe that the FRET rate hardly depends
on the frequency-integrated LDOS.Nevertheless, the FRET is controlled between inhibition and
4×enhancement at distances close to themirror, typically a few nm. Finally, we discuss the
consequences of our results to applications of Förster resonance energy transfer, for instance in
quantum information processing.

1. Introduction

Awell-known optical interaction between pairs of quantum emitters—such as excited atoms, ions,molecules,
or quantumdots—is Förster resonance energy transfer (FRET). In this process,first identified in a seminal 1948
paper by Förster, one quantumof excitation energy is transferred from afirst emitter, called a donor, to a second
emitter that is referred to as an acceptor [1]. FRET is the dominant energy transfermechanismbetween emitters
in nanometer proximity, since the rate has a characteristic ( )r rF da

6 distance dependence, with rF the Förster
radius and rda the distance between donor and acceptor. Othermeans to control a FRET system are traditionally
the spectral properties of the coupled emitters—the overlap between the donor’s emission spectrum and the
acceptor’s absorptions spectrum—or the relative orientations of the dipolemoments [1, 2]. FRETplays a central
role in the photosynthetic apparatus of plants and bacteria [3, 4].Many applications are based on FRET, ranging
fromphotovoltaics [5, 6], lighting [7–9], to sensing [10]wheremolecular distances [11, 12], and interactions are
probed [13, 14]. FRET is also relevant to themanipulation, storage, and transfer of quantum information
[15–20].
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Modern nanofabrication techniques have stimulated the relevant questionwhether Förster transfer can be
controlled purely bymeans of the nanophotonic environment, while leaving the FRETpair geometrically and
chemically unchanged. Indeed, theory and experiments have revealed both enhanced and inhibited FRET rates
formany different nanophotonic systems, ranging fromdielectric systems via plasmonic systems to graphene
[21–39]. At the same time, it is well known that the spontaneous-emission rate of a single emitter is controlled by
the nanophotonic environment [40–43]. FollowingDrexhage’s pioneering work [40], it was established that the
emission rate is directly proportional (no offset) to the local density of optical states (LDOS) that counts the
number of photonmodes available for emission [41, 42]. Therefore, the natural question arises whether the
FRET rate correlates with the spontaneous-emission rate of the donor, hence with the LDOS at the donor
emission frequency, in particular, whether the FRET rate is directly proportional to the emission rate and
the LDOS.

Strikingly, a variety of dependencies of the FRET rate on the LDOShave been reported over the years, leading
to an ongoing debate if, and how the FRET rate depends on the LDOS. In a pioneering study of energy transfer
between Eu3+-ions and dyemolecules in ametalmicrocavity, Andrew andBarnes reported that the transfer rate
depends linearly on the donor decay rate and thus on the LDOS at the donor emission frequency [21], although
therewas also a significant offset from linearity. In a seminal theory paper [22], Dung, Knöll, andWelsch found
that the FRET rate is generally differently affected by theGreen function than the spontaneous emission rate,
namely the FRET rate depends on the total Green function between two positions (donor and acceptor), whereas
the emission rate depends on the imaginary part of theGreen function at twice the same position (donor) that is
directly proportional to the LDOS [44]. Dung et al also reported approximately linear relations between the
energy-transfer rate and the donor-decay rate for certainmodels in spatial regions similar to Andrew and
Barnes’ experiments [22]. An experiment on transfer between ions near a dielectric interface reported that the
transfer rate is independent of the LDOS, in agreementwith qualitative arguments [23]. A study of transfer
between Si nanocrystals and erbium ions near a gold film suggested a linear dependence of the transfer rate on
the LDOS [24]. In a subsequent study by the same group, the experimental results weremodeledwith a transfer
rate depending on the square of the LDOS [25]. Possible reasons for the disparity between the experimental
observations include insufficient control on the donor–acceptor distance, incomplete pairing of every donor to
only one acceptor, or cross-talk between neighboring donor–acceptor pairs.

Therefore, the relation between Förster transfer and the LDOSwas recently studied using isolated and
efficient donor–acceptor pairs with precisely defined distance between donor and acceptormolecules [32]. The
LDOSwas precisely controlled by positioning the donor–acceptor pairs at well-defined distances to ametallic
mirror [40, 42, 45]. The outcome of this experimental studywas that the Förster transfer rate is independent on
the optical LDOS, in agreement with theoretical considerations based onGreen functions [32]. Consequently,
the Förster transfer efficiency is greatest for a vanishing emission rate, like in a 3Dphotonic band gap crystal [43].
Similar results were obtainedwith different light sources (rare-Earth ions), andwith different cavities [34, 38]. In
[36] themeasured dependence of the FRET rate on the LDOSwas reported to beweak for single FRETpairs,
and recent theoretical work on collective energy transfer supports these results in the dilute limit [37]. On the
other hand, a linear relation between the FRET rate and the LDOSwas reported in experiments with donors and
acceptors at a fewnanometers frommetal surfaces [35, 39]. In recent theoretical work onmetallic nanospheres,
approximately linear relationships between FRET and emission rateswere numerically found, but only above a
certain threshold for the emission rate [33].

Several experimentally relevant geometries andmaterialmodels have been considered in the theoretical
literature: Dung and co-workers studied the energy transfer between pairs ofmolecules in the vicinity of planar
structures andmicrospheres; the nanostructures weremodeledwithDrude–Lorentz dielectric functions typical
ofmetals [22]. Reference [26] studied energy transfer between excitons in nanocrystal quantumdots,mediated
bymetal nanoparticles that were describedwith an empiricalmetallic dielectric function. Reference [29]
considered FRETnear ametal nanosphere with spatial dispersion. Reference [30] studied plasmon-enhanced
radiative energy transfer. Reference [33] studied energy transfer in the vicinity of ametallic spherewith an
empiricalmetallic dielectric function. Reference [37] studied energy transfer in the vicinity of ametallicmirror
thatwas describedwith an empiricalmetallic dielectric function.Many of thesemodels thus takematerial
dispersion and resonances and loss into account.

Amain purpose of the present article is to provide new theoretical insights in FRET and its possible
relationshipwith the LDOS. To this end, we have chosen to study an as simple as possiblemodel systemwith
vanishing dispersion, as this allows us to derive analytical expressions that are not compounded by intricate
dispersive or resonant effects. As the starting point, section 2 summarizes essential expressions of energy-
transfer and spontaneous-emission rates in terms of theGreen function for light. In section 3we argue (and
illustrate in section 5) that not all energy transfer is FRET, and that the FRET rate is related to only the
longitudinal part of theGreen function, while the full Green function describes the total energy transfer.We
derive that the FRET rate becomes strictly frequency-independent, while it is well known that the LDOS is
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typically strongly frequency dependent. This general result still leaves open the possibility that the FRET rate
depends on the frequency-integrated LDOS (allowing for controlled engineering), an intriguing possibility that
has not been explored in the literature to date. Indeed, in section 4we derive that the FRET rate can be expressed
as a frequency integral of the LDOS. In section 5we test and illustrate our general results for a donor–acceptor
pair close to an idealmirror, amodel system that allows analytical expressions both for emission and for energy
transfer rates.We notably verify the importance of the broadband LDOS integral. In section 6we discuss
experimental implications of our results.We summarize in section 7, and give a number of derivations in the
Appendices.

2. Energy transfer, emission, andGreen function

The total energy transfer rate gda between a donor and an acceptor dipole in any nanophotonic environment is
given by

( ) ( ) ( ) ( )òg w s w w s w=
-¥

¥
w r rd , , , 1da a a d d

where ( )s wd,a are the donor (single-photon) emission and acceptor (single-photon) absorption spectra in free
space [22, 46]. All effects of the nanophotonic environment are contained in the transfer amplitude squared

( )ww r r, ,a d that can be expressed in terms of theGreen functionG( )wr r, ,a d of themedium, and the donor and
acceptor dipolemomentsm m,d a respectively, as

G( ) ∣ · ( ) · ∣ ( )*


m mw
p w

e
w=

⎛
⎝⎜

⎞
⎠⎟w

c
r r r r, ,

2
, , . 2a d 2

2

0
2

2

a a d d
2

These expressions for the total energy transfer ratewere originally derived byDung, Knöll, andWelsch for a
general class of nanophotonicmedia thatmay exhibit both frequency-dispersion and absorption5 [22]. For
homogeneousmedia, see also [47]. Sincewe are in this paper interested in FRET,we discuss in section 3 the
relation between total energy transfer and FRET.

For the energy transfer rate equation (1)we only need to know theGreen function in the frequency interval
where the donor and acceptor spectra overlap appreciably. For very broad cases thatwe are aware of, the overlap
bandwidth amounts to 40 nm, or less than 10% relative bandwidth compared to the visible spectral range. For
generic dielectricmedia that show little absorption andweak dispersion in the visible range (see examples in
[48]), it is safe to assume that in this relatively narrow frequency overlap interval both absorption and dispersion
are sufficiently weak to be neglected. Also, in the experiments of [32], the overlap regionwas a factor of 10
narrower than the visible spectrum. Tomodel FRET in suchweakly dispersivemedia, we can therefore
approximate ( )e wr, by a real-valued frequency-independent dielectric function ( )e r . The corresponding
Green functionG( )w¢r r, , is the solution of the usual wave equation for light

G G I( ) ( ) ( ) ( ) ( )w e
w

w d- ´  ´ ¢ + ¢ = - ¢⎜ ⎟⎛
⎝

⎞
⎠c

r r r r r r r, , , , , 3
2

with a localized source on the right-hand side6. Unlike ( )e r , theGreen functionG( )w¢r r, , is frequency-
dependent and complex-valued.

While the energy transfer rate in equation (1) evidently depends on the donor and acceptor spectra ( )s wd

and ( )s wa , we focus here on the dependence on the environment as given in equation (2).We assume that the
donor and acceptor overlap in a range that is sufficiently narrow that the transfer amplitude ( )ww r r, ,a d varies
negligibly in this range.With this assumptionwe obtain for the energy-transfer rate

¯ ( ) ( ) ( ) ( )òg w w s w s w=
-¥

¥
w r r, , d , 4da a d da a d

where wda is the frequencywhere the integrand in the overlap integral assumes itsmaximal value. The overlap
integral is the same for anynanophotonic environment, so that the ratio of energy transfer rates in two different
environments simply depends on the ratio of ( )ww r r, ,a d da in both environments.

Spontaneous emission of the donor is a process that competes with the energy transfer to the acceptor. In the
absence of an acceptormolecule, it is well known that the spontaneous emission of the donor in a photonic
environment depends on frequency and on position, often described in terms of a local density of states (LDOS).
Nowadays, extensive experimental know-how is available on how to engineer the LDOS and thereby the
spontaneous-emission rate. Relevant LDOS variations occur near dielectric interfaces and in photonic crystals,

5
Our functionw is the same as w̃ in [22], equation (44).

6
Our definition of theGreen function agreeswith [49, 64] and differs by aminus sign from [22, 44].
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for example. An important experimental question is therefore whether the donor–acceptor FRET rate can be
controlled by changing the donor-only spontaneous-emission rate [21, 32, 34].

The donor-only spontaneous-emission rate ( )g wr,se d at position r with real-valued dipolemoment
ˆm mm= and transition frequency wd can be expressed in terms of the imaginary part of theGreen function of

themedium as

G( ) · [ ( )] · ( )


m mg w
w
e

w= -
⎛
⎝⎜

⎞
⎠⎟c

r r r,
2

Im , , 5se d d
d
2

0
2 d d d

or ( ) ( ˆ ) ( )m mg w pm w r w e=r r, , , , 3d d
2

d p d d 0 in terms of the partial LDOS

G( ˆ ) ( ) ˆ · [ ( )] · ˆ ( )m m mr w w p w= - cr r r, , 6 Im , , , 6p d d d
2

d d d

where m̂ is a dipole-orientation unit vector [41, 44]. The optical density of states (LDOS) is then defined as the
dipole-orientation-averaged partial LDOS [44]. Herewe do not average over dipole orientations, as we are
interested in possible correlations between energy transfer and spontaneous-emission rates for afixed dipole
orientation7. In table 1we summarize all energy-transfer and spontaneous-emission rates that are defined
throughout this paper.

3. Contributions to energy transfer

The total energy transfer rate equation (1) for arbitrary donor–acceptor distances is expressed in terms of the
Green function of themedium. As is well known, not all energy transfer is Förster energy transfer. For donor–
acceptor distances of less than ten nanometers, one refers to Förster transfer.Wewill derive below that at these
distances one does not need the full Green function to describe energy transfer, whichwill yield important
insights into Förster transfer in inhomogeneousmedia andwill simplify calculations of the FRET rate.

For arbitrary nondispersive and non-lossymedia, we can express theGreen function in terms of the
complete set of optical eigenmodes lf satisfying thewave equation

( ) ( )( ) ( ) ( )e w- ´  ´ + =l l lcf r r f r 0, 72

with positive eigenfrequencies w >l 0. TheGreen function, being the solution of equation (3), can be expanded
in terms of thesemode functions lf . An important property of this expansion follows by combining equations
(21) and (22) of [49], namely that theGreen function can bewritten as the sumof three terms:

G I

G G

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
     

*
*å åw

w h w w
w

e
d¢ =

¢

+ -
- ¢ + - ¢

l

l l

l l
l l⎜ ⎟⎛

⎝
⎞
⎠c

c c
r r

f r f r
f r f r

r
r r, ,

i
. 82

2 2

2 2

R S

Since theGreen function controls the energy transfer rate (see equation (2)), it is relevant to discern energy
transfer processes corresponding to these terms. Thefirst term in equation (8) denotedGR corresponds to
resonant dipole–dipole interaction (RDDI), the radiative process bywhich the donor at position r emits afield
that is then received by the acceptor at position ¢r . In case of homogeneousmedia and only in the farfield, this
process can be identifiedwith emision and subsequent absorption of transverse photons [51]. Using equation
(20) of [49],GR can be uniquely identified as the generalized transverse (part of the)Green function of the
inhomogeneousmedium,with the property that G· [ ( ) ( )]e w ¢ =r r r, , 0R . The name ‘resonant’ describes
that photon energies close to the donor and acceptor resonance energy are themost probable energy
transporters, in linewith the denominator ( )w h w+ - li 2 2 of this first term.

The second term in equation (8) calledGS corresponds to the static dipole–dipole interaction (SDDI) that
also causes energy transfer fromdonor to acceptor. The third term in equation (8) is proportional to theDirac

Table 1. Symbols for the various energy transfer and emission rates
used in this paper, with their defining equations.

Glossary of transfer and emission rates

gda Total donor–acceptor energy transfer rate, equation (1)

ḡda Narrowband approximation of transfer rate, equation (4)

gse Spontaneous emission rate of the donor, equation (5)

gF Exact FRET rate fromdonor to acceptor, equation (13)
( )gF
L Broadband LDOS approximated FRET rate, equation (18)

˜ ( )gF
HF High-frequency approximated FRET rate, equation (23)

7
What is for convenience called LDOS should in the following be understood to be the partial LDOS.
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delta function ( )d - ¢r r . Since ¹ ¢r r in case of energy transfer, this contribution vanishes. Nevertheless, this
third term is conceptually also important, since from equation (19) of [49] it follows that the sumofGS and the
third term can be uniquely identified as the longitudinal (part of the)Green function of the inhomogeneous
medium.

In themolecular physics literature, homogeneous environments are typically assumed, and FRET is
introduced as a direct consequence of non-retardedCoulombic longitudinal intermolecular interaction [51],
and is typically not described in terms ofGreen functions. Conversely, in the nanophotonic literature, energy
transfer in inhomogeneousmedia is often described in terms ofGreen functions, but the FRET contribution due
to longitudinal interactions is not singled out. The concept of the longitudinal Green function can serve to
bridge these two research fields.We identify the longitudinal Green function and henceGS to describe the
instantaneous electrostatic intermolecular interaction of any inhomogeneousmedium8. As explained below, it
is indeed this SDDI that gives rise to the FRET rate that characteristically scales as -rda

6 in homogeneousmedia
and dominates the total energy transfer for strongly subwavelength donor–acceptor separations. By identifying
the generalized transverse and longitudinal parts of theGreen function and relating them to energy transfer
processes, we provide a unified theory of radiative and radiationless energy transfer in inhomogeneous
dielectrics. Therebywe generalize the pioneeringwork on energy transfer in homogeneousmedia by Andrews
[51], who demonstrated that radiative and radiationless energy transfer are long-range and short-range limits of
the samemechanism.

Equation (8) also provides a practical way of obtaining the static Green function (that controls FRET) from
the total Green function, even if a complete set ofmodes has not been determined. The equation implies that for
arbitrary inhomogeneous environments the static part of theGreen function is obtained from the total Green
function by the following limiting procedure (for ¹ ¢r r )

G G( ) ( ) ( )w
w

w w¢ = ¢
w

r r r r, ,
1

lim , , , 9S 2 0

2

which provides a justification of our use of the term ‘static’. From equation (9),GS appears as the non-retarded
near-field approximation of the retarded full Green function. As an important test, selecting in this way the static
part of theGreen function of a homogeneousmedium(A.1) indeed gives that only

G I( ) ( ˆˆ) ( )w
p w

= -
c

n r
r r rr, ,

4
3 , 10h,S 1 2

0
2

2 2 3

with = -r r r1 2 contributes to Förster energy transfer, and not the terms ofGh that vary as r1 and r1 2. This
leads to the characteristic FRET rate scaling as r1 6. By contrast, for inhomogeneousmedia the staticGreen
function not only depends on the distance between donor and emitter, but also on the absolute positions of both
donor and acceptor in themedium. In section 5 (figure 2)wewill illustrate for one example of such an
inhomogeneousmedium (near an idealmirror) that the total energy-transfer rate for donor–acceptor pairs
separated by a fewnanometers is indeed fully determined by the static Green function as obtained by
equation (9). In contrast, this Green function is not of thewell-known form(10) for homogeneousmedia.

Based on the discussion above andwithout loss of generality we define FRET in inhomogeneousmedia as
that part of the total energy transfer that ismediated by the static Green function.We also define the square of the
Förster transfer amplitude, in analogy to equation (2), by

G( ) ∣ · ( ) · ∣ ( )*


m mw
p w

e
wº

⎛
⎝⎜

⎞
⎠⎟w

c
r r r r, ,

2
, , . 11F a d 2

2

0
2

2

a S a d d
2

This equation appears to be similar to equation (2), yet with the total Green functionG replaced by its static part
GS, as defined in equation (8) and computed in equation (9). The FRET rate gF is then obtained by substituting

( )ww r r, ,F a d for ( )ww r r, ,a d into equation (1), giving:

( ) ( ) ( ) ( ) ( )òg w s w w s w=
-¥

¥
wr r r r, d , , . 12F a d a F a d d

Herewe arrive at an important simplification in the description of Förster transfer in inhomogeneousmedia, by
noting that from equations (9) and (11), the quantity ( )ww r r, ,F a d is actually independent of frequencyω. The
FRET rate gF is then given by the simple relation

8
In theminimal-coupling formalism theHamiltonian features an electrostatic intermolecular interaction that is absent in amultipolar

formalism [50], also for inhomogeneousmedia [52]. Instead, in themultipolar formalism, the electrostatic interaction is an induced
interaction that shows up in theGreen function [49].We note that both the RDDI and the SDDI in equation (8) havemode expansions that
involve all opticalmodes, corresponding to arbitrary positive eigenfrequencies wl. The longitudinal Green function and hence GS in
equation (8) can be expressed in terms of (generalized) transversemode functions lf due to a completeness relation that involves both
longitudinal and transversemodes [49].
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( ) ( ) ( ) ( ) ( )òg w s w s w=
-¥

¥
wr r r r, , d . 13F a d F a d a d

While this expression looks similar to the approximate expression for the total energy transfer rate (equation (4)),
we emphasize that equation (13) is an exact expression for the FRET rate, also for broad donor and acceptor
spectra, valid for any photonic environment that is lossless andweakly dispersive in the frequency rangewhere
the donor and acceptor spectra overlap.Moreover, the spectral overlap integral in equation (13) is the same for
anynanophotonic environment9 . All effects of the nondispersive inhomogeneous environment are therefore
contained in the frequency-independent prefactor ( )w r r,F a d . In other words, while there is an effect of the
nanophotonic environment on the FRET rate as decribed by themedium-dependent static Green function, this
effect does not depend on the resonance frequencies of the donor and acceptor (for constantmedium-
independent overlap integral in equation (13)). But becausewe have now found that the FRET rate does not
depend on the donor and acceptor frequencies, it also follows that the FRET rate can not be a function of the
LDOS at these particular frequencies.

4. FRET in terms of a frequency-integrated LDOS

Although the exact expression in equation (13) states that the FRET rate in a nondispersive nanophotonic
medium is independent of the LDOS at the donor’s resonance frequency, this fact leaves the possibility open that
theremight be a relation between the FRET rate and a frequency-integrated LDOS.Wewill nowderive such a
relation, thereby providing a newperspective on efforts to control the FRET rate by engineering the LDOS.

We start with themode expansion of theGreen function in equation (8) to derive a useful new expression,
relating the Förster transfer rate to a frequency-integral over G[ ]Im .We use the fact thatG ( )w¢r r, ,S is real-
valued, as is proven in [52]. Thus the imaginary part of theGreen function is equal to G[ ]Im R and themode
expansion of G[ ]Im becomes

G[ ( )] ( ) ( ) ( ) ( )*åw
p
w

d w w¢ = - ¢ -
l

l l l
c

r r f r f rIm , ,
2

, 14
2

with w > 0.We note that only degeneratemodes with frequencies w w=l showup in thismode expansion of
G[ ]Im . This can also be seen in another way: the defining equation for theGreen function equation (3) implies

that the imaginary part of theGreen function satisfies the same source-free equation (7) as the subset ofmodes
( )lf r for which the eigenfrequency wl equalsω. Themode expansion(14) is indeed a solution of equation (7).

Therefore, G[ ( )]w¢r rIm , , and hence the LDOS and the spontaneous-emission rate (equation (5)) can be
completely expanded in terms of only those degenerate eigenmodes, in contrast to the energy transfer that
requires all opticalmodes, see equation (8).

Whenwemultiply equation (14) byω and integrate overω, we obtain as one of ourmajor results an exact
identity for the static Green function

G G( ) [ ( )] ( )òw
pw

w w w=
¥

r r r r, ,
2

d Im , , . 15S a d 2 0
1 1 a d 1

This identity is valid for a general nanophotonicmedium inwhichmaterial dispersion can be neglected.
Equation (15)was derived using a complete set ofmodes, yet does not depend on the specific set ofmodes used.
When inserting this identity into equation (11), we express ( )wwF and hence the FRET rate gF of equation (12) in
terms of an integral over the imaginary part of theGreen function.While this is somewhat analogous to thewell-
known expression for the spontaneous-emission rateequation (5), there are two important differences: the first
difference between equation (15) for Förster energy transfer and equation (5) for spontaneous emission in terms
of G[ ]Im is of course that equation (15) is an integral over all positive frequencies. The secondmain difference is
that in equation (15) theGreen function G[ ( )]wr rIm , ,a d 1 appears with two position arguments—one for the
donor and one for the acceptor—instead of only one position as in the spontaneous-emission rate. Amajor
advantage of an expression in terms of G[ ]Im is that G[ ]Im does not diverge for r ra d, in contrast to G[ ]Re .
In appendix Cwe verify and show explicitly that the identity in equation (15) holds both in homogeneousmedia
aswell as for the nanophotonic case of arbitrary positions near an idealmirror.

We nowuse equation (15) to derive an approximate expressionG( )
S
L for the static Green functionGS that

allows us tofind an interesting relation between the FRET rate and the frequency-integrated LDOS.Our
approximation ismotivated by the fact that G[ ( )]w-r rIm ,d a for homogeneousmedia (based on
equation (A.1)) varies appreciably only for variations in the donor–acceptor distance rda on the scale of the
wavelength of light, typically  l =r 500 nmda 0 (with l p w= c20 0). From equation (A.6) it follows that the
same holds true for G[ ( )]wr rIm , ,d a for the idealmirror. In contrast, FREToccurs on a length scale of

9
Let us recall here that ( )s wa and ( )s wd are the donor’s emission spectrum and acceptor’s absorption spectrum in free space, see equation (1)

and [22, 46].
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r 5 nmda , typically a hundred times smaller.Motivated by these considerations, we approximate
G[ ( )]wr rIm , ,a d 1 in the integrand of equation (15) by the zeroth-order Taylor approximation
G[ ( )]wr rIm , ,d d 1 . The accuracy of this approximation depends on the optical frequencyω. The approximation

will therefore not hold for all frequencies that are integrated over, and becomesworse for higher frequencies. But
it appears that we canmake an accurate approximation throughout a huge optical bandwidth  w W0 1 . If we
choose wW = 10 0, i.e, a frequency bandwidth all theway up to the vacuumultraviolet (VUV), then

G[ ( )]wr rIm , ,a d 1 will only deviate appreciably from G[ ( )]wr rIm , ,d d 1 for donor–acceptor distances
l>r 10da 0 , which is in practice of the order of 50 nm, much larger than typical donor–acceptor distances in

Förster transfer experiments.We obtain the expression for the approximate static Green functionG( )
S
L as

G G

G

( ) [ ( )]
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w w w
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w w w
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Thefirst termof this equation is recognized to be an integral of the LDOSover a large frequency bandwidth,
ranging from zero frequency (or ‘DC’) to a high frequencyΩ in theVUV range.While the specific value ofΩ
does notmattermuch, it is important thatΩ can be chosenmuch greater than optical frequencies, while the
inequality ( ) Wn r cr 1d da still holds.Within this approximation, we canfind an expression for the FRET rate
for donor and acceptormolecules with parallel (but not necessarily equal) dipolemoments, i.e. ˆm mm=a a and

ˆm mm=b b . To this end, we substituteGS forG
( )
S
L in wF (equation (11)) and express the imaginary part of the

Green function in terms of the partial LDOS rp of equation (6), to obtain a new approximate transfer amplitude
squared

G
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Just like ( )w r r,F a d in equation (11), its ‘LDOS approximation’ ( )( )w r r,F
L

a d in equation (17) is independent of the
donor emission frequency. Substituting wF in equation (12)with ( )wF

L , we obtain an approximate10 FRET rate
( )gF
L

( ) ( ) ( ) ( )( ) ( ) òg w s w s w=
-¥

¥
w r r, d . 18F

L
F

L
a d a d

The approximate FRET rate ( )gF
L thus depends on the LDOS, albeit integrated over a broad frequency range from

zero toΩ (equation (17)). In section 5wewill give an examplewhere this approximation is extremely accurate,
andwe also explore by howmuch the integrated LDOS controls the FRET rate.

5. Energy transfer near amirror

As a concrete example of our theoretical considerations, we study energy transfer from a single donor to a single
acceptor separated by a distance ∣ ∣= -r r rda a d in the vicinity of an idealmirror. To limit parameter space, we
focus on situations inwhich the donor and the acceptor have the same distance z to themirror, andwhere the
dipolemoments of dipole and acceptor point in the same direction. In the parallel (P) configuration shown in
figure 1(a), both dipolemoments are oriented parallel to themirror, and the dipoles point normally to the
mirror in the perpendicular (⊥) configuration offigure 1(b). In general, both the LDOS and the partial LDOS for
any dipole orientation arefixed once the partial LDOS is known for nine independent dipole orientations, but
for planar systems considered here, the two directions⊥ and P suffice for a complete description [53].

For homogeneousmedia it is well known that Förster energy transfer dominates the total energy transfer at
strongly sub-wavelength distances, andwewill now see that this is also the case in inhomogeneousmedia, by
means of the idealmirror. The total energy transfer near an idealmirror depends on the total Green function as
given in equations (A.7) and(A.8) for the two dipole configurations (see figure 1). For the donor and acceptor
near themirror in the parallel configuration, we obtain for the static part

G· ( ) ·
( )
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10
In the symbol ( )gF

L the superscript L ismeant to indicate a FRET rate in terms of the LDOS.
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while for the perpendicular configurationwefind
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Both these static interactions depend on the donor–acceptor separation rda aswell as on z. In both cases the static
interaction in a homogeneousmedium is recovered for FRETpairs at distances to themirrormuch larger than
thedonor–acceptor distance ( )z rda . The spatial dependence of the Förster transfer amplitude of equation (11)
and of the FRET rate in equation (13) is hereby determined for both configurations.

5.1. FRET versus total energy transfer
Infigure 2we display the ratio of the FRET rate and the total energy-transfer rate as a function of donor–acceptor
distance, for three distances z of the FRETpair to themirror, and for both dipole configurations11. For the total

Figure 1.We study pairs of donor and acceptor dipoles that are separated by a distance rda, and located at a distance z from an ideal
mirror.We focus on two configurationswhere the dipoles are oriented perpendicular to the position difference of donor and acceptor
( ˆ ˆ ) ( )m m ^ -r r,d a d a : (Left)Both dipolemoments of donor and acceptor are parallel to themirror surface (‘parallel configuration’, P)
and parallel to each other. (Right)Both dipolemoments of donor and acceptor are perpendicular to themirror surface (‘perpendicular
configuration’,⊥) and parallel to each other.

Figure 2.Ratio of the Förster resonance energy transfer rate to the total energy transfer rate ( )g gF da versus donor–acceptor distance
rda for three distances z of donor and acceptor to themirror. The upper panel is for dipoles parallel to themirror, the lower panel for
dipoles perpendicular to themirror. Note the logarithmic rda, with dimensionless scaled values on the lower abscissa and absolute
distance in nanometers on the upper abscissa for l = 628 nm. The central colored bar indicates where various terms of theGreen
function dominate, and towhich process.

11
Herewe take n=1 aswewill do in allfigures below.
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ratewe used the narrow bandwidth assumption of equation (4). For strongly sub-wavelength donor–acceptor
distances ( )w <r c 0.1da , we observe that the total energy transfer rate(4) equals the FRET rate(13),
irrespective of the distance to themirror and of the dipole orientation. On amore technical level,figure 2
confirms that even in nanophotonicmedia, the total Green function(equation (8)) that features in the
expression for energy transfer can indeed be replaced by the staticGreen function(equation (9)) at typical
Förster-transfer distances, as was assumed in section 3.

Whenwe increase the donor–acceptor distance beyond the Förster range ( )w< <r c0.1 2da ,figure 2
shows that the ratio of the two rates exceeds unity. To understand this behavior, we recall that energy transfer is
proportional to the absolute value squared of the total Green function.Here, the total Green function is no
longer accurately approximated by the static part. Instead, it is the sumof the staticGS and the radiative terms
GR of the total Green function(equation (8)) that has become relevant, and these twoGreen function terms start
to interfere. For donor–acceptor distances rda where the data exceed unity, the interference is destructive. The
interference occurs not only near amirror, but also for homogeneousmedia, as one can readily verify. As a result
of the interference, one cannot express the total energy-transfer rate as the sumof a few partial rates, where the
Förster transfer rate would be one such partial rate.

At large donor–acceptor distances ( )wr c 1da , the FRET rate decreasesmuch faster with distance than the
total transfer rate, similar as in homogeneousmedia. In this distance range, the energy transfer is radiative: the
donor emits a photon that is absorbed by the acceptor. Energy transfer on this larger distance scale is actively
studied for various nanophotonic environments [54–59]. In contrast, in the remainder of this paper we only
consider sub-wavelength donor–acceptor distances, as is the case for all FRET experimentsmentioned in the
Introduction. Themainmessage offigure 2 is that for these few-nanometer distances, the total energy transfer
rate(4) equals the FRET rate(13).

Figure 3 is complementary to the previous one in the sense that here the FRET rate is plotted versus distance
to themirror z for several donor–acceptor distances rda, and for both dipole configurations.We again show the
ratio of the FRET rate and the total transfer rate, using equation (4) for gda. At donor–acceptor distances

l=r 100da and l=r 50da , typical for experimental situations, we clearly see that FRETdominates the total
energy transfer rate, independent of the distance to themirror. At least 98% of the total energy transfer rate
consists of the FRET rate. Even for a large donor–acceptor distance l=r 20da that ismuch larger than inmost
experimental FRET cases (corresponds to =r 31 nmda at l = 628 nm), the FRET rate and the total rate differ
by only some ten percent. Thus, figures 2 and 3 illustrate that in the nanophotonic case near an idealmirror, the
FRETdominates the total energy transfer at strongly sub-wavelength donor–acceptor distances, similar as in the
well-known case of homogeneousmedia.

5.2.Distance-dependent transfer rate
Figure 4 shows the total energy-transfer rate between a donor and an acceptor as a function of distance z to the
mirror. The panels show results for several donor–acceptor spacings l l l=r 100, 50, 25da . In all cases, the

Figure 3. FRET rate gF divided by the total energy transfer rate gda , versus distance to themirror, for three values of the
donor–acceptor distance rda. The lower abscissa is the dimensionless reduced distance, the upper abscissa is the absolute distance
in nanometer for l = 628 nm. Upper panel: parallel dipole configuration; lower panel: perpendicular dipole configuration.
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total energy transfer reveals a considerable z-dependence at short range. In the limit of vanishing dipole-mirror
distance ( z 0), dipoles perpendicular to themirror have a four-fold enhanced transfer rate compared to free
space. The factor four can be understood from thewell-knownmethod of image charges in electrodynamics: at a
vanishing distance, each image dipole enhance the field two-fold, and since energy transfer invokes two dipoles,
the total result is a four-fold enhancement.

With increasing dipole-mirror distance the rate infigure 4 shows aminimumat a characteristic distance that
is remarkably close to the donor–acceptor spacing z rmin da. At larger distances >z rda, the transfer rate
converges to the rate in the homogeneousmedium. In appendix B it is shown that this convergence holdsmore
generally: away from surfaces or other scatterers, the FRET rate in an inhomogeneousmedium is increasingly
proportional to ( )n r1 4

da
6 , with n the refractive index surrounding the donor–acceptor pair.

Figure 4 also shows that in the limit of vanishing dipole-mirror distance ( z 0), dipoles parallel to the
mirror have an inhibited transfer rate. This result can also be understood from themethod of image charges,
since each image dipole reveals completely destructive interference in the limit of vanishing distance to the
mirror.With increasing dipole-mirror distance z the energy-transfer rate increasesmonotonously, and reaches
half the free-space rate at a characteristic distance that is also remarkably close to the donor–acceptor spacing

z r1 2 da. At larger distances >z rda, the transfer rate tends to the homogeneousmedium rate. It is remarkable
that even in a simple system studied here a considerablemodification of the energy transfer rate is feasible. Thus
the energy transfer rate between a donor and an acceptor is controlled by the distance to themirror, and the open
question is whether this control can be understood as beingmediated by the LDOS.

5.3. Energy transfer and LDOS
Infigure 5, we display the distance-dependence of the energy transfer rate in comparison to the spontaneous-
emission rate, overmore than three orders ofmagnitude in distance. The spontaneous-emission rate varies with
distance to themirror on length scales comparable to thewavelength of light, as first discovered byDrexhage
[40]. In contrast, the energy transfer rates vary on dramatically shorter length scales, about one-and-a-half
(parallel configuration) to two (perpendicular configuration) orders ofmagnitude smaller than thewavelength
scale. This result indicates that if there is a relation between energy transfer rate and LDOS, it is not a simple
proportionality, as proposed in several previous studies.

To further investigate a possible relation between energy transfer rate and LDOS,figure 6 shows a parametric
plot of the energy transfer rate as a function of (donor-only) spontaneous-emission rate, where each data point

Figure 4.Total energy transfer rate between a donor and an acceptor dipole, scaled to the free-space transfer rate, versus distance to
themirror, for the parallel and perpendicular configurations. The lower abscissa gives the distance in scaled units, and the upper
abscissa absolute distances at awavelength ( )l p= ´ =2 100 nm 628 nm. From top to bottom the three panels correspond to
donor–acceptor spacings l l l=r 100, 50, 25da , where dipole-mirror distances equal to rda aremarked by vertical dotted lines
(off scale in the lowest panel).
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pertains to a certain distance z to themirror. The top abscissa is the relative LDOS at the donor emission
frequency that equals the relative emission rate. The data at a reduced emission rate less than unity correspond
mostly to the parallel dipole configurations infigures 4 and 5, whereas the results at higher emission rate
correspond tomostly to the perpendicular configurations in thesefigures. For a typical donor–acceptor distance
( l=r 100da ), figure 6 shows that the energy transfer rate is independent of the emission rate and the LDOS
over nearly thewhole range, in agreementwith conclusions of [23, 32, 34, 38]. The energy transfer decreases fast
near the low emission rate edge and increases fast near the high emission rate edge, both of which correspond to
distances very close to themirror (seefigure 4). Fromfigure 6 it is readily apparent that the energy transfer rate
does not increase linearly with the LDOS, leave alone quadratically, as was previously proposed.

Therefore, while both the spontaneous-emission rate and the FRET rate depend on the distance to the
mirror and hence differ from the corresponding rates in a homogeneousmedium, wefind no position-
dependent correlation between the two rates infigure 5 and no LDOS-dependent correlation infigure 6. These
results are related to the absence of a frequency-dependent correlation between the two rates that we derived in
section 3: if we keep the spatial positions ( )r r,a d fixedwhile shifting the central frequencies of the donor and
acceptor spectra ( )w w,d a by the same frequency ( )wD , then the spontaneous-emission rate obviously changes
(see equation (5)) in response to a similar change in LDOS,whereas our equation (13) reveals that the position-
dependent FRET rate remains constant.

5.4. FRET and integrated LDOS
To verify the accuracy of the LDOS-approximated FRET rate ( )gF

L near the idealmirror, we vary the frequency
bandwidthΩ over whichwe integrate the LDOS (see equations (17) and (18)). The required frequency integrals

Figure 5.Comparison of donor–acceptor energy transfer rates gda and donor-only spontaneous emission rates gse, as a function of the
distance z to themirror. The lower abscissa is the scaled distance, the top abscissa is the absolute distance for l = 628 nm, both on a
log scale. The energy transfer is scaled by the free-space energy transfer rate gda,0, the spontaneous emission by the free-space rate gse,0.
Data are shown both for the parallel and for the perpendicular configurations. For vanishing distance, g gda da,0 is inhibited to 0 for the
parallel and enhanced to 4 for the perpendicular configuration.

Figure 6.Parametric plot of the scaled energy transfer rate versus scaled spontaneous-emission rate (or scaled LDOS, see top abscissa)
for a donor–acceptor distance l=r 100da , for dipoles perpendicular (red connected circles) and parallel (blue connected squares) to
themirror. Data are fromfigure 5. Themagenta horizontal line shows a constant transfer rate g µ Nda rad

0 , the black dashed curve a
linear relation g µ Nda rad

1 , and the green dashed curve a quadratic relation g µ Nda rad
2 .
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in equation (16) are calculated analytically in appendixD.2. Infigure 7we see that for both dipole configurations,
the approximate FRET rate indeed tends to the exact rate for vanishing W  0. ForΩup to w10 d, the
approximate rate is very close to the exact one, towithin 5%. At even higher frequencies, up to wW = 20 d, the
approximate FRET rate is within 10% of the exact rate, as anticipated in section 4 on the basis of general
considerations.

The validity of the approximate FRET rate ( )gF
L improves when the donor–acceptor distance rda is reduced,

since the spatial zero-order Taylor expansion of G[ ]Im is then a better approximation.We can also improve the
approximation by reducing the frequency bandwidthΩ inwhichwemake the Taylor approximation. Both
trends are indeed found in appendixD.1where ( )gF

L is calculated for the homogeneousmedium. In the limit of a

vanishing frequency bandwidth (W  0), the approximate Förster transfer rate ( )gF
L reduces to the exact Förster

transfer rate gF of equation (12).
To verify that the approximate FRET rates shown infigure 7were not ‘lucky shots’ for the chosen fixed

distances to themirror, we study in the complementary figure 8(a) the accuracy of ( )gF
L as a function of distance

to themirror z, for a constant LDOSbandwidth wW = 10 d. Thefigure clearly shows the great accuracy of the
LDOS approximation, irrespective of the distance z of the FRETpair to the idealmirror. For a narrower
bandwidth of wW = 2 d, the accuracy is even better, as expected.

At this point, onemight be tempted to conclude from figures 7 and 8 that the FRET rate is intimately related
to an integral over the LDOS. This conclusion is too rash, however, because the corresponding approximate
relationequation (18) consists of two integrals, where only one of them is an integral over the LDOS at the donor
position, while the other is a high frequency (HF) integral of the imaginary part of theGreen function featuring
both donor and acceptor positions. Thus the relevant question becomes: what happens if wemake a cruder
approximation to the FRET rate by simply removing the LDOS integral? Instead of equation (16)we then use the
HF approximation G( )

S
HF to the staticGreen function

G G( ) [ ( )] ( )( ) òw
pw

w w w=
W

¥
r r r r, ,

2
d Im , , . 21S

HF
a d 2 1 1 a d 1

Figure 7. LDOS-approximated FRET rate ( )gF
L (equation (18))normalized to the exact FRET rate gF (equation (12)) versus the

bandwidthΩ of the LDOS-frequency integral. Lower abscissa:Ω scaled by the donor frequency w p l= c2d . Upper abscissa:
minimumwavelength l p= Wc2min for l = 628 nm. Black full curves are for dipole-to-mirror distance l=z 100, red dashed
curves for l=z 40, and blue dashed–dotted curves for l=z 2, all curves are for a donor–acceptor distance l=r 100da . (a)
Parallel dipole configuration; (b) perpendicular dipole configuration. (c)Comparison of the LDOS-approximation(equation (18))
and theHF approximation(equation (21)) of the FRET rate as a function of LDOSbandwidthΩ. Rates are scaled to the exact FRET
rate, and the distance to themirror and the donor–acceptor distance arefixed.
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This leads to aHF approximation to the squared Förster amplitude

G( )( ( )) ∣ · ( ) · ∣ ( )( ) ( )* m mp w e w=w c r r2 , , 22F
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0
2 2

a S
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a d d
2

and aHF approximation to the FRET rate

( ) ( ) ( ) ( )( ) ( ) òg w s w s w=
-¥

¥
w r r, d , 23F

HF
F

HF
a d a d

which is independent of frequency, similar as gF and
( )gF
L . Infigure 7(c) the two approximated FRET rates ( )gF

L

and ( )gF
HF are compared for the idealmirror as a function of the bandwidthΩ, while keeping the donor–acceptor

distance rda and the distance to themirror zfixed. Indeed ( )gF
L is themore accurate approximation of the two, yet

( )gF
HF is not a bad approximation at all: by only integrating in equation (23) over high frequencies

( ) w gW 10 ,d F
HF is accurate towithin about 7%. If we take a narrower—yet still broad—frequency bandwidth,

for example up to wW = 2 d (in theUV), we still neglect the LDOS in thewhole visible range.Nevertheless
figure 7(c) shows that for wW = 2 d the two approximations ( )gF

L and ( )gF
HF agree to a high accuracy with the exact

rate gF. Therefore, figures 7 and 8 show that for the idealmirror there is essentially no dependence of the FRET
rate on the frequency-integrated LDOS at visible frequencies, and only aweak dependence on the frequency-
integrated LDOS atUV frequencies and beyond.Wenote that this conclusion is complementary to the one in
section 3, where the FRET rate was found not to depend on the LDOS at one frequency namely at wd. In
addition, this conclusion that the FRET rate numerically is independent from the integrated LDOS is completely
consistent with our derivation that the LDOS approximation equation (17) for Förster transfer, featuring a
broadband LDOS integral, is accurate.

6.Discussion

Wediscuss consequences of our theoretical results to experiments, first regarding relevant length scales.We
have performed analytical calculations and plotted rates versus reduced lengths, namely the reduced distance to
themirror w p l=z c z2 and the reduced donor–acceptor distance lrda . For the benefit of experiments and
applications, we have plotted in several figures additional abscissae for absolute length scales that pertain to a
particular choice of the donor emissionwavelength ld.We have chosen

( )l p w p= = ´2 2 100 nmd d ;628 nm, afigure thatwe call a ‘Mermin-wavelength’ [63] as it simplifies the
conversion between reduced units and real units to amere ´100 multiplication. Figure 2 characterizes the
donor–acceptor distance dependence of the transfer rate. It is apparent that Förster transfer dominates in the
range <r 20 nmda , a length scalemuch smaller than thewavelength of light. Energy transfer is dominated by
radiative transfer in the range >r 100 nmda , which is reasonable as this distance range is of the order of the
wavelength.

Figure 4 characterizes the distance dependence to themirror. The rangewhere both the total and the FRET
rates are controlled by the distance to themirror is in the range <z 20 nm. This range is set by the donor–
acceptor distance that is formost typical FRETpairs in the order of =r 10 nmda , in view of typical Förster
distances of the same size [2]. Interestingly, while the energy transfer in this range ( <z rda) is not controlled by
the LDOS, the transfer rate is nevertheless controlled by precise positioning near amirror. An example of a
method that could be used to achieve such control at optical wavelengths is by attaching emitters, such as

Figure 8. LDOS-approximated FRET rate ( )gF
L (equation (18))normalized to the exact FRET rate gF (equation (12)) versus (scaled)

distance to themirror, for an LDOS frequency bandwidth up to wW = 10 0 (red dashed curve), and up to wW = 2 0 (blue
dashed–dotted curve). The donor–acceptor distance is l=r 100da .
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molecules or quantumdots, to the ends of brush polymers with sub-10 nm lengths [60].With Rydberg atoms, it
appears to be feasible to realize the situation <z rda, albeit in theGHz frequency range [61].

Howdo our theoretical results compare to experiments? Our theoreticalfindings support the FRET-rate and
spontaneous-emission ratemeasurements by [32], where it was observed that Förster transfer rates are not
affected by the LDOS.Ourfindings also agreewith the results of [23, 34, 36, 38]. In other experiments where a
relation between FRET and LDOSwas found, this could be the case if the energy transfer is not dominated by
Förster energy transfer, or if themedium is strongly dispersive. Furthermore, our theory does currentely not
include typical aspects of experiments, such as incompletely paired donors, cross-talk between dense donor–
acceptor pairs, inhomogeneously distributed donor–acceptor distances, etcetera.

Let us turn to broadband LDOS control: in [23] qualitative arguments were given that FRET rates are amore
broadband property than the LDOS, namely that the energy transfer rate is determined by the electromagnetic
modeswith thewave vectors of the order of r1 da, while the density of states has contributions from allmodes.
Here, we have provided quantitative support for this argument by deriving the relation(equation (16)) between
the staticGreen function and the integrated LDOS. This relation induces the newquestionwhether FRET rates
can be controlled by the broadband frequency-integrated LDOS. Sincewe are not aware of experiments where
FRET rates are comparedwith frequency-integrated LDOS,we base our discussion on our present numerical
results for the idealmirror. If onewants to control the FRET rate bymanipulating the LDOS, then figure 7 shows
that onemust control the LDOSover a huge bandwidth that ranges all theway from zero frequency (‘DC’) to a
frequencyΩ that is on the order of ten times the donor emission frequency wd. If we consider theMermin-
wavelength 628 nm, then the upper bound on the LDOSbandwidth corresponds to awavelength of 63 nm,
deep in the vacuumultraviolet (VUV) range. At these very short wavelengths, allmaterials that are commonly
used in nanophotonic control are strongly absorbing, e.g., dielectrics such as silica, semiconductors such as
silicon, ormetals such as silver. In practice, the optical properties of typical nanophotonicmaterials differ from
their commonly used properties at wavelengths below 200–250 nm,which corresponds to wW < 3 d. Yet, even if
onewere able to control the LDOS over such a phenomenally broad bandwidth w< W <0 3 d, figure 8 shows
that the broadband LDOS-integral contributes negligibly—much less than 10−3

—to the Förster transfer rate. In
brief, if the idealmirror is exemplary for arbitrary photonicmedia, whichwe think it is, then controlling the
FRET rate via the frequency-integrated LDOS seems rather unlikely.

In quantum information processing, FRET is amechanism bywhich nearby (<10 nm) qubitsmay interact
[15–20], intended or not. Lovett et al considered the implications of FRETbetween two quantumdots [17]. In
one implementation, it was found that it is desirable to suppress the Förster interaction to create entanglement
using biexcitons. In another implementation, it was found that FRET should not be suppressed, but switched in
time. There is a growing interest inmanipulating the LDOS, either suppressing it bymeans of a complete 3D
photonic band gap [43], or by ultrafast switching in the time-domain [62]. It follows fromour present results
that these tools cannot be used to switch or suppress FRETbetween quantumbits in this way. Conversely, our
results indicate that FRET-related quantum information processingmay be controlled by carefully positioning
the interacting quantum systems (i.e, the quantumdots) in engineered inhomogeneous dielectric environments.

7. Conclusions

Motivated by the current debate in nanophotonics about the control of FRET—notably regarding the role of the
LDOS—wehave studied FRET in arbitrary nanophotonicmediawithweak dispersion andweak absorption in
the frequency overlap range of donor and acceptor. This systemhas allowed us to obtain two new insights.

Firstly, we investigated the dependency of the FRET rate on theGreen function.We argued that for the FRET
rate one only needs to consider the static part of theGreen function (see equations (8) and (9)). Hence, the
Förster transfer rate(equation (13)) becomes independent of frequency, in contrast to spontaneous-emission
rates that are strongly frequency dependent in nanophotonicmedia, asmediated by the LDOS. It follows from
this result that the position-dependent FRET rate and the LDOS at the donor transion frequency are completely
uncorrelated for any nondispersivemedium. Even forweakly dispersivemediawe expect this conclusion
to hold.

Secondly, we derived an exact expression for the FRET rate as a frequency integral of the imaginary part of
theGreen function. This leads to very accurate approximation for the FRET rate in terms of a broadband
frequency integral over the LDOS(equation (18)), integrated over a huge bandwidth from zero frequency to far
into theUV,which offers a newperspective on the relation between the LDOS and the FRET rate.

Using an exactly solvable analyticalmodel systemof a donor and an acceptor near an idealmirror, we have
seen that the FRET rate differs from the FRET rate in the corresponding homogeneousmedium. For two
particular dipole configurations, we found that the FRET rate is inhibited ( 0) ormarkedly enhanced (by a
factor ´4 ). Thus, even this simplemodel systemoffers the opportunity to control energy transfer rates at
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distances close to themirror, typically a fewnm.Nevertheless, wefind that the FRET rate is independent of the
LDOS at the donor emission frequency.Moreover, we observe that the FRET rate hardly depends on the
frequency-integrated LDOS. It is enticing that our general result that the FRET rate and the LDOS are
uncorrelated, is corroborated by the examplary systemof the idealmirror.

We also used the example of themirror to test the approximate relationequation (16) of the FRET rate in
terms of the sumof the frequency-integrated LDOS and a second integral overUV frequencies and higher.We
verified that the approximation is indeed extremely accurate, as we anticipated. Remarkably, a detailed
quantitative consideration reveals that the broadband LDOS-integral in equation (16) contributes negligibly to
the FRET rate, while the FRET rate can be accurately approximated in terms of only the second (HF) integral, at
least for the specificmedium considered here. So not only can FRET rates not be controlled by changing the
LDOS, as earlier theoretical and experimental work also showed, but FRET rates even seem to be practically
immune to changes in the frequency-integrated LDOS aswell.

As future extensions of ourwork, it will be interesting to study the contribution of the integrated LDOS to
the approximate relation(equation (16)) for the FRET rate also formore complex photonicmedia, andwhether
such an integral relation also holds for dispersive and lossymedia. Finally, we have discussed the consequences of
our results to applications of Förster resonance energy transfer, for instance in quantum information processing.
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AppendixA. Green tensor for planarmirror

TheGreen tensor in a homogeneousmediumwith real-valued refractive index n is given by [64]

G G

I I

( ) ( )

[ ( ) ( ) ˆ ˆ]
( )

( ) ( )

w w

p w
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=- + Ä +
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P w Q w
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withe = -r r r1 2, the functions P Q, are defined as ( ) ( )º - +- -P w w w1 1 2 and
( ) ( )º - + -- -Q w w w1 3 31 2 , and the argument equals ( )w=w n r ci . For G=n 1, h equals the free-space

Green function, denoted byG0. For distancesmuch smaller than an optical wavelength ( ( )) l p w=r c n2 ,
theGreen function scales asG ( ) ( )w µ n rr, 1h

2 3 . From equations (1) and (2)we then obtain the characteristic
scaling of the Förster transfer rate as ( )g µ n r1da

4
da
6 : the Förster transfer rate strongly decreaseswith increasing

donor–acceptor distance andwith increasing refractive index. In contrast, it follows from equation (5) that the
spontaneous-emission rate gse in a homogeneousmedium is enhanced by a factor n compared to free space.
More refined analyses that include local-field effects likewise predict a spontaneous-emission enhancement [65].

Next, we determine theGreen function of an ideal flatmirrorwithin an otherwise homogeneousmedium
with refractive index n.While the function can be foundwith variousmethods [45, 66], we briefly showhow it is
obtained by generalizing themultiple-scattering formalismof [67] for infinitely thin planes. In the usualmixed
Fourier-real-space representation ( ) zk , relevant to planar systemswith translational invariance in the (x, y)-
directions, the homogeneous-mediumGreen functionG ( ) w¢z zk , , ,h becomes
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where the scalar Green function is given by ( =g g kh h , ) ( ∣ ∣)w¢ = - ¢z z k z z, , exp 2i z ( )k2i z ,
( )w= -k n c kz

2 2 2 ( )= - ¢¢s z z, signzz
1 2 and thematrix is represented in the basis (ˆ ˆ ˆ)s p z, ,k k , where k is

thewave vector of the incoming light, ẑ is the positive-z-direction, ŝk is the direction of s-polarized light (out of
the plane of incidence), and p̂k points perpendicular to ẑ in the plane of incidence. An infinitely thin plane at
z=0 that scatters light can be described by a T-matrix T( ) wk , , in terms of which theGreen function becomes

G G G T G( ) ( ) ( ) ( ) ( )¢ = ¢ + ¢z z z z z z, , , 0 0, , A.3h h h
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where the ( ) wk , dependence was dropped. It was found in [67] that for an infinitely thin plane thatmodels a
finite-thickness dielectric slab of dielectric constant ε, the T-matrix assumes a diagonal form in the same basis as
Gh in equation (A.2), in particular T ( )= T Tdiag , , 0ss pp . The infinitely thin plane becomes a perfectly reflecting
mirror if we choose for example a lossless Drude responsewith e w w= -1 p

2 2, in the limit of an infinite
plasma frequency w  ¥p . Hence the T-matrix for a perfectmirror in a homogeneous dielectric has nonzero
diagonal components = -T k2i z

ss and ( )w= -T n c k2i z
pp 2 . The idealmirror divides space into two optically

disconnected half spaces, and belowwe only consider the half space z 0. It then follows that theGreen
function for the idealmirror is written in terms of homogeneous-mediumGreen functions as

G G G( ) ( ) ( ) ( ) ˆ ˆ ( )

w
¢ = - ¢ - + ¢ + + ¢

⎛
⎝⎜

⎞
⎠⎟z z z z z z

k c

n
g z z zz, 2 , A.4h h

2

h

where the ( ) wk , -dependence of theGreen functionswas again suppressed. To understand energy transfer rates
near amirror, we need to determine theGreen function in the real-space representation, which is related to the
previous equation by the inverse Fourier transform

G G( )
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òw
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2
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where ( )r = x y, and ( )r¢ = ¢ ¢x y, so that ( )r= zr , .Wefind theGreen function for an idealmirror in a
homogeneousmedium as the sumof three terms:
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For the parallel configuration, wefind
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where rda is the donor–acceptor distance, z the distance of both dipoles to themirror, and [ ( ) ]º +u r z2da
2 2 1 2,

and ˆm m= y as infigure 1.
For the perpendicular configurationwefind
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with ˆm m=^ z as infigure 1 and u as in equation (A.7).
For completeness, we also give the known [66] single-emitter spontaneous-emission rates near themirror

(neglecting local-field effects [65] here and below). For a dipole at a distance z oriented parallel to themirror, we
find from equations (5) and (A.6)

( ) ( ) ( ) ( ) ( ) ( )g w g w
a

a
a

a
a

a
= - + -
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⎤
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⎫⎬⎭z a, 1
3

2

sin cos sin
, A9se se,h 2 3

in terms of a w= n z c2 and the homogeneous-medium spontaneous-emission rate ( )g m w p e= n c3se,h
2 3

0
3 ,

i.e, n times the spontaneous-emission rate in free space. For a dipole emitter oriented normal to themirror, the
position-dependent spontaneous emission rate becomes

( ) ( ) ( )g w g w
a

a
a

a
= - -^ ⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭z b, 1 3
cos sin

. A9se se,h 2 3

In the limit z 0, the rate ( )g wz,se
vanishes, while ( )g w^ z,se tends to g2 se,h. In the limit  ¥z , both

( )g wz,se
and ( )g w^ z,se tend to the homogeneous-medium rate ( )g wse,h .

Appendix B. Scalingwith donor–acceptor distance of Förster transfer rate

Herewe show that the homogeneous-mediumFörster transfer rate, scaling as ( )µ n r1 h
4

da
6 , is an important

limiting case also for inhomogeneousmedia. Let us assume that the donor and acceptor are separated by a few
nanometer, experiencing the same dielectricmaterial with a dielectric function eh, within an inhomogeneous
nanophotonic environment. In all of space, we define the optical potential V I( ) [ ( ) ]( )w e e w= - - cr r, h

2 , so
that the optical potential vanishes in the vicinity of the donor–acceptor pair. Then theGreen function of the
medium can be expressed in terms of the homogeneous-mediumGreen function and the optical potential as

G G G G( ) ( ) ( ) · ( ) · ( ) ( )òw w w w w= - + -r r r r r r r V r r r, , , d , , , , , B.1a d h a d 1 h a 1 1 1 d

which is theDyson–Schwinger equation for theGreen function that controls the energy transfer. The equation
can be formally solved in terms of the T-matrix of themedium as
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G G G G( ) ( ) ( ) · ( ) · ( ) ( )ò= - + - -r r r r r r r r T r r r r, d d , , B.2Da d h a d 1 2 h a 1 1 2 h 2

where the frequency dependencewas dropped for readability. The important property of the T-matrix
( )wT r r, ,1 2 is now that it is only non-vanishing where both ( )V r1 and ( )V r2 are nonzero, so that it vanishes in the

vicinity of the donor–acceptor pair. Thus theGreen function that controls the energy transfer is given by a
homogeneous-mediumGreen function and a scattering term. The former is a function of the distance between
donor and acceptor, whereas the latter does not depend on theD–Adistance, but rather on the distance of donor
and acceptor to points in space where the optical potential is non-vanishing.

As the donor–acceptor distance rda is decreased, the homogeneous-medium contribution in equation (B.2)
grows rapidly, essentially becoming equal toG ( )w-r r ,h,S a d of equation (10), whereas the contribution of the
scattering termdoes not changemuch. So in the limit of very small rda, or whenmaking the distance to interfaces
larger, the homogeneous-medium term alwayswins, and onewouldfind thewell-known Förster transfer rate of
the infinite homogeneousmedium ( )µ n r1 h

4
da
6 .

AppendixC. Tests of identity(15)

C.1. Test for a homogeneousmedium
TheGreen functionG ( )wr,h for homogeneousmedia is given in equation (A.1), and its static part by
equation (10). The identity(15) that relates them can be shown to hold as a tensorial identity; herewe derive the
identity for its projection G· ( ) ·m mwr,h , wherewe assumem to be perpendicular to r. (Physically, this
corresponds to energy transfer between donor and acceptor with equal dipoles both pointing perpendicular to
their position difference vector.)The projection of the identity(15) that we are to derive has the form
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Nowby integration variable transformation the right-hand side of this equation can beworked out to give
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with dummy variable k equal to unity. Now thefirst two termswithin the square brackets do not contribute to
the integral since ( ) ( )ò pd=

¥
x kx kd cos

0
and ( ) ( )ò p d= -

¥
x x kx kd sin

k0

d

d
, while the third term in the

square brackets of equation (C.2) does contribute since ( )ò p=
¥

x x xd sin 2
0

/ / . Thus the projection of the

identity(15) indeed holds for spatially homogeneousmedia.

C.2. Test for an idealmirror
For the idealmirrorwe again only consider a projection of the identity(15),first projecting onto dipoles
corresponding to the parallel configuration offigure 1. TheGreen function for the idealmirror is given in
equation (A.6), and its static part for the parallel configuration by equation (19). Now for this parallel
configuration, the projectedGreen tensor consists of a homogeneous-medium and a reflected part, and so does
the projected static Green function. In sectionC.1 abovewe already showed that the sought identity indeed holds
for homogeneousmedia. So the remaining task is to show that the identity(15) holds separately for the reflected
parts of the projectedGreen functions. This is not difficult sincemathematically the frequency integral that is to
be performed is the same as for the homogeneousmedium; only the distance parameter rda is to be replaced by

+r z4da
2 2 . Thus the projection of the identity(15) onto the parallel dipole directions indeed holds. The

qualitative novelty as compared to the homogeneous-medium case is that we thus show that the identity holds
irrespective of the distance z of the FRETpair to themirror.We also checked (not shown) that the identity(15)
holds for the projection onto perpendicular dipoles, i.e. as in the perpendicular configuration offigure 1.

AppendixD. Accuracy of the approximate expressions(16) and (23)

To test the accuracy of the LDOS approximationG ( )( ) wr r, ,S
L

a d of the static Green function, it is convenient to
use equation (15) to rewrite equation (16) as

G G G G( ) ( ) [ ( ) ( )] ( )( ) òw w
pw

w w w w= + -
W

r r r r r r r r, , , ,
2

d Im , , , , , D.1S
L

a d S a d 2 0
1 1 d d 1 a d 1

In this form, the approximate staticGreen function is equal to the exact expression plus an integral over afinite
interval of awell-behaved integrand. Likewise, to test the accuracy of theHF approximationG ( )( ) wr r, ,S

HF
a d

defined in equation (23) of the staticGreen function, it is useful to rewrite it as
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G G G( ) ( ) [ ( )] ( )( ) òw w
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Again the integrand is well-defined, i.e, non-diverging over the entire finite integration interval.

D.1. Accuracy of LDOS approximation for homogeneousmedia
Weestimate the accuracy of equation (D.1) for theGreen function(A.1) of a homogeneousmedium. By taking
the projection onto dipole vectors both on the left and right, we find
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where w=D n d c and for convenience we defined the function ( ) ( ) ( )( )º + -h x x x x x xcos sin 1 12 2 . So
here (and also for themirror below)wemust determine integrals of the type
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With this result, we find that the relative error ofmaking the LDOS approximationG ( )( ) wr r, ,h,S
L

a d of
equation (D.1) for theGreen functionG ( )wr r, ,h,S a d is
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Thisfifth-power dependence shows that for homogeneousmedia the LDOS approximation is excellent as long
as Wn r c 1da , which for typical Förster distances of a few nanometers corresponds to a frequency bandwidth
Ω of order w10 d inwhich the LDOS approximation can bemade, where wd is a typical optical frequency (e.g., the
donor emission frequency).

D.2. Accuracy of LDOS approximation for the idealmirror
For the parallel configuration near the idealmirror, wefind equation (D.3), but with the integrand on the right-
hand side replaced by

( ) [ ( ) ( )] ( )m
p

w- - - -
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
n

c
h D h Z h U

4

2

3
2 , D.7

2

1
2

1 1 1

where w w= =D n r c Z n z c,1 1 da 1 1 , and = +U D Z41 1
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and a scattering contribution between the curly brackets. By threefold use of the identity(D.4) it then follows
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For the perpendicular configuration near the idealmirror, it can be found that the integrand of equation (D.3)
is instead replaced by the slightly longer expression
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The frequency integral can again be performed using the identity(D.4) and a standard integral of the type
( )ò x x xd sin . The resulting expression for G G· ( ) ·( )m m-S

L
S , and the corresponding result(D.8) for the

parallel configuration are both used infigures 7 and 8.
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