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Abstract

Motivated by the ongoing debate about nanophotonic control of Forster resonance energy transfer
(FRET), notably by the local density of optical states (LDOS), we study FRET and spontaneous
emission in arbitrary nanophotonic media with weak dispersion and weak absorption in the frequency
overlap range of donor and acceptor. This system allows us to obtain the following two new insights.
Firstly, we derive that the FRET rate only depends on the static part of the Green function. Hence, the
FRET rate is independent of frequency, in contrast to spontaneous-emission rates and LDOS that are
strongly frequency dependent in nanophotonic media. Therefore, the position-dependent FRET rate
and the LDOS at the donor transition frequency are completely uncorrelated for any nondispersive
medium. Secondly, we derive an exact expression for the FRET rate as a frequency integral of the
imaginary part of the Green function. This leads to very accurate approximation for the FRET rate that
teatures the LDOS that is integrated over a huge bandwidth ranging from zero frequency to far into the
UV. Weillustrate these general results for the analytic model system of a pair of ideal dipole emitters—
donor and acceptor—in the vicinity of an ideal mirror. We find that the FRET rate is independent of
the LDOS at the donor emission frequency. Moreover, we observe that the FRET rate hardly depends
on the frequency-integrated LDOS. Nevertheless, the FRET is controlled between inhibition and

4 x enhancement at distances close to the mirror, typically a few nm. Finally, we discuss the
consequences of our results to applications of Forster resonance energy transfer, for instance in
quantum information processing.

1. Introduction

A well-known optical interaction between pairs of quantum emitters—such as excited atoms, ions, molecules,
or quantum dots—is Forster resonance energy transfer (FRET). In this process, first identified in a seminal 1948
paper by Forster, one quantum of excitation energy is transferred from a first emitter, called a donor, to a second
emitter that is referred to as an acceptor [1]. FRET is the dominant energy transfer mechanism between emitters
in nanometer proximity, since the rate has a characteristic (r/r4,)° distance dependence, with rg the Forster
radius and 74, the distance between donor and acceptor. Other means to control a FRET system are traditionally
the spectral properties of the coupled emitters—the overlap between the donor’s emission spectrum and the
acceptor’s absorptions spectrum—or the relative orientations of the dipole moments [1, 2]. FRET plays a central
role in the photosynthetic apparatus of plants and bacteria [3, 4]. Many applications are based on FRET, ranging
from photovoltaics [5, 6], lighting [7-9], to sensing [ 10] where molecular distances [11, 12], and interactions are
probed [13, 14]. FRET is also relevant to the manipulation, storage, and transfer of quantum information
[15-20].

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Modern nanofabrication techniques have stimulated the relevant question whether Forster transfer can be
controlled purely by means of the nanophotonic environment, while leaving the FRET pair geometrically and
chemically unchanged. Indeed, theory and experiments have revealed both enhanced and inhibited FRET rates
for many different nanophotonic systems, ranging from dielectric systems via plasmonic systems to graphene
[21-39]. At the same time, it is well known that the spontaneous-emission rate of a single emitter is controlled by
the nanophotonic environment [40—43]. Following Drexhage’s pioneering work [40], it was established that the
emission rate is directly proportional (no offset) to the local density of optical states (LDOS) that counts the
number of photon modes available for emission [41, 42]. Therefore, the natural question arises whether the
FRET rate correlates with the spontaneous-emission rate of the donor, hence with the LDOS at the donor
emission frequency, in particular, whether the FRET rate is directly proportional to the emission rate and
the LDOS.

Strikingly, a variety of dependencies of the FRET rate on the LDOS have been reported over the years, leading
to an ongoing debate if, and how the FRET rate depends on the LDOS. In a pioneering study of energy transfer
between Eu’"-ions and dye molecules in a metal microcavity, Andrew and Barnes reported that the transfer rate
depends linearly on the donor decay rate and thus on the LDOS at the donor emission frequency [21], although
there was also a significant offset from linearity. In a seminal theory paper [22], Dung, Knoll, and Welsch found
that the FRET rate is generally differently affected by the Green function than the spontaneous emission rate,
namely the FRET rate depends on the total Green function between two positions (donor and acceptor), whereas
the emission rate depends on the imaginary part of the Green function at twice the same position (donor) that is
directly proportional to the LDOS [44]. Dung et al also reported approximately linear relations between the
energy-transfer rate and the donor-decay rate for certain models in spatial regions similar to Andrew and
Barnes’ experiments [22]. An experiment on transfer between ions near a dielectric interface reported that the
transfer rate is independent of the LDOS, in agreement with qualitative arguments [23]. A study of transfer
between Si nanocrystals and erbium ions near a gold film suggested a linear dependence of the transfer rate on
the LDOS [24]. In a subsequent study by the same group, the experimental results were modeled with a transfer
rate depending on the square of the LDOS [25]. Possible reasons for the disparity between the experimental
observations include insufficient control on the donor—acceptor distance, incomplete pairing of every donor to
only one acceptor, or cross-talk between neighboring donor—acceptor pairs.

Therefore, the relation between Forster transfer and the LDOS was recently studied using isolated and
efficient donor—acceptor pairs with precisely defined distance between donor and acceptor molecules [32]. The
LDOS was precisely controlled by positioning the donor—acceptor pairs at well-defined distances to a metallic
mirror [40,42, 45]. The outcome of this experimental study was that the Forster transfer rate is independent on
the optical LDOS, in agreement with theoretical considerations based on Green functions [32]. Consequently,
the Forster transfer efficiency is greatest for a vanishing emission rate, like in a 3D photonic band gap crystal [43].
Similar results were obtained with different light sources (rare-Earth ions), and with different cavities [34, 38]. In

[36] the measured dependence of the FRET rate on the LDOS was reported to be weak for single FRET pairs,
and recent theoretical work on collective energy transfer supports these results in the dilute limit [37]. On the
other hand, a linear relation between the FRET rate and the LDOS was reported in experiments with donors and
acceptors at a few nanometers from metal surfaces [35, 39]. In recent theoretical work on metallic nanospheres,
approximately linear relationships between FRET and emission rates were numerically found, but only above a
certain threshold for the emission rate [33].

Several experimentally relevant geometries and material models have been considered in the theoretical
literature: Dung and co-workers studied the energy transfer between pairs of molecules in the vicinity of planar
structures and microspheres; the nanostructures were modeled with Drude—Lorentz dielectric functions typical
of metals [22]. Reference [26] studied energy transfer between excitons in nanocrystal quantum dots, mediated
by metal nanoparticles that were described with an empirical metallic dielectric function. Reference [29]
considered FRET near a metal nanosphere with spatial dispersion. Reference [30] studied plasmon-enhanced
radiative energy transfer. Reference [33] studied energy transfer in the vicinity of a metallic sphere with an
empirical metallic dielectric function. Reference [37] studied energy transfer in the vicinity of a metallic mirror
that was described with an empirical metallic dielectric function. Many of these models thus take material
dispersion and resonances and loss into account.

A main purpose of the present article is to provide new theoretical insights in FRET and its possible
relationship with the LDOS. To this end, we have chosen to study an as simple as possible model system with
vanishing dispersion, as this allows us to derive analytical expressions that are not compounded by intricate
dispersive or resonant effects. As the starting point, section 2 summarizes essential expressions of energy-
transfer and spontaneous-emission rates in terms of the Green function for light. In section 3 we argue (and
illustrate in section 5) that not all energy transfer is FRET, and that the FRET rate is related to only the
longitudinal part of the Green function, while the full Green function describes the fotal energy transfer. We
derive that the FRET rate becomes strictly frequency-independent, while it is well known that the LDOS is
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typically strongly frequency dependent. This general result still leaves open the possibility that the FRET rate
depends on the frequency-integrated LDOS (allowing for controlled engineering), an intriguing possibility that
has not been explored in the literature to date. Indeed, in section 4 we derive that the FRET rate can be expressed
asa frequency integral of the LDOS. In section 5 we test and illustrate our general results for a donor—acceptor
pair close to an ideal mirror, a model system that allows analytical expressions both for emission and for energy
transfer rates. We notably verify the importance of the broadband LDOS integral. In section 6 we discuss
experimental implications of our results. We summarize in section 7, and give a number of derivations in the
Appendices.

2. Energy transfer, emission, and Green function

The total energy transfer rate -, between a donor and an acceptor dipole in any nanophotonic environment is
given by

Vda = fjc dw g, (W)W (15, g, w)og (W), (D

where g4, (w) are the donor (single-photon) emission and acceptor (single-photon) absorption spectra in free
space [22, 46]. All effects of the nanophotonic environment are contained in the transfer amplitude squared

w (1, 1g, w) that can be expressed in terms of the Green function G(r,, rg4, w) of the medium, and the donor and
acceptor dipole moments 14, L, respectively, as

o w? Y
W(l'a, Iy, W) = (_) |l‘l‘;(< : G(ra) T4, (U) . IJ‘dlz' (2)

7 2 EoC 2

These expressions for the total energy transfer rate were originally derived by Dung, Knéll, and Welsch for a
general class of nanophotonic media that may exhibit both frequency-dispersion and absorption” [22]. For
homogeneous media, see also [47]. Since we are in this paper interested in FRET, we discuss in section 3 the
relation between total energy transfer and FRET.

For the energy transfer rate equation (1) we only need to know the Green function in the frequency interval
where the donor and acceptor spectra overlap appreciably. For very broad cases that we are aware of, the overlap
bandwidth amounts to 40 nm, or less than 10% relative bandwidth compared to the visible spectral range. For
generic dielectric media that show little absorption and weak dispersion in the visible range (see examples in
[48]), it is safe to assume that in this relatively narrow frequency overlap interval both absorption and dispersion
are sufficiently weak to be neglected. Also, in the experiments of [32], the overlap region was a factor of 10
narrower than the visible spectrum. To model FRET in such weakly dispersive media, we can therefore
approximate € (r, w) by areal-valued frequency-independent dielectric function ¢ (r). The corresponding
Green function G(r, ', w) is the solution of the usual wave equation for light

2
-V xVxG@r,w + E(I‘)(E) G, r,w) =6 —r)l, 3)
c

with alocalized source on the right-hand side®. Unlike ¢ (r), the Green function G(r, r’, w) is frequency-
dependent and complex-valued.

While the energy transfer rate in equation (1) evidently depends on the donor and acceptor spectra oy (w)
and o, (w), we focus here on the dependence on the environment as given in equation (2). We assume that the
donor and acceptor overlap in a range that is sufficiently narrow that the transfer amplitude w (r,, 14, w) varies
negligibly in this range. With this assumption we obtain for the energy-transfer rate

Yoo = w1 wa) [ dw a@a), @

where wy, is the frequency where the integrand in the overlap integral assumes its maximal value. The overlap
integral is the same for any nanophotonic environment, so that the ratio of energy transfer rates in two different
environments simply depends on the ratio of w (r,, ¥4, wg,) in both environments.

Spontaneous emission of the donor is a process that competes with the energy transfer to the acceptor. In the
absence of an acceptor molecule, it is well known that the spontaneous emission of the donor in a photonic
environment depends on frequency and on position, often described in terms of a local density of states (LDOS).
Nowadays, extensive experimental know-how is available on how to engineer the LDOS and thereby the
spontaneous-emission rate. Relevant LDOS variations occur near dielectric interfaces and in photonic crystals,

5 Our function wis the same as W in [22], equation (44).

6 Our definition of the Green function agrees with [49, 64] and differs by a minus sign from [22, 44].
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Table 1. Symbols for the various energy transfer and emission rates
used in this paper, with their defining equations.

Glossary of transfer and emission rates

Vda Total donor—acceptor energy transfer rate, equation (1)
Via Narrowband approximation of transfer rate, equation (4)
Yee Spontaneous emission rate of the donor, equation (5)
Ve Exact FRET rate from donor to acceptor, equation (13)
V;L) Broadband LDOS approximated FRET rate, equation (18)
ﬁéHF) High-frequency approximated FRET rate, equation (23)

for example. An important experimental question is therefore whether the donor—acceptor FRET rate can be
controlled by changing the donor-only spontaneous-emission rate [21, 32, 34].

The donor-only spontaneous-emission rate 7, (r, wg) at position r with real-valued dipole moment
¢ = pfrand transition frequency wy can be expressed in terms of the imaginary part of the Green function of
the medium as

2w3
ﬁsocz

Ve (Xd> wa) = ( )u - Im[G(xg, 14, wa)] - p (5)

or v (rg, Wy, ) = Wuzwdpp (tg, wa, f1)/(37) in terms of the partial LDOS
Py (ta, wWa, 1) = —(6wa/mc?) fu - Im[G(xg, 13, wa)] - f2, (6)

where f1 is a dipole-orientation unit vector [41, 44]. The optical density of states (LDOS) is then defined as the
dipole-orientation-averaged partial LDOS [44]. Here we do not average over dipole orientations, as we are
interested in possible correlations between energy transfer and spontaneous-emission rates for a fixed dipole
orientation’. In table 1 we summarize all energy-transfer and spontaneous-emission rates that are defined
throughout this paper.

3. Contributions to energy transfer

The total energy transfer rate equation (1) for arbitrary donor—acceptor distances is expressed in terms of the
Green function of the medium. As is well known, not all energy transfer is Forster energy transfer. For donor—
acceptor distances of less than ten nanometers, one refers to Forster transfer. We will derive below that at these
distances one does not need the full Green function to describe energy transfer, which will yield important
insights into Forster transfer in inhomogeneous media and will simplify calculations of the FRET rate.

For arbitrary nondispersive and non-lossy media, we can express the Green function in terms of the
complete set of optical eigenmodes f, satisfying the wave equation

=V x V x fi(r) + e(@(wy/0)*fi(®) =0, @)

with positive eigenfrequencies wy > 0. The Green function, being the solution of equation (3), can be expanded
in terms of these mode functions f,. An important property of this expansion follows by combining equations
(21)and (22) of [49], namely that the Green function can be written as the sum of three terms:

X, ) 2
6.1, w) = ey ONE) ‘(i) SROEE) + LY s - ol ®)
Nt i —wy \w/ 5 e(r)
Gr Gs

Since the Green function controls the energy transfer rate (see equation (2)), it is relevant to discern energy
transfer processes corresponding to these terms. The first term in equation (8) denoted Gy corresponds to
resonant dipole—dipole interaction (RDDI), the radiative process by which the donor at position r emits a field
that is then received by the acceptor at position r’. In case of homogeneous media and only in the far field, this
process can be identified with emision and subsequent absorption of transverse photons [51]. Using equation
(20) of [49], Gy can be uniquely identified as the generalized transverse (part of the) Green function of the
inhomogeneous medium, with the property that V - [¢ (r) G (r, r’, w)] = 0. The name ‘resonant’ describes
that photon energies close to the donor and acceptor resonance energy are the most probable energy
transporters, in line with the denominator (w + in)> — w3 of this first term.

The second term in equation (8) called Gg corresponds to the static dipole—dipole interaction (SDDI) that
also causes energy transfer from donor to acceptor. The third term in equation (8) is proportional to the Dirac

7 Whatis for convenience called LDOS should in the following be understood to be the partial LDOS.
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delta function § (r — r'). Since r = r’ in case of energy transfer, this contribution vanishes. Nevertheless, this
third term is conceptually also important, since from equation (19) of [49] it follows that the sum of Gg and the
third term can be uniquely identified as the longitudinal (part of the) Green function of the inhomogeneous
medium.

In the molecular physics literature, homogeneous environments are typically assumed, and FRET is
introduced as a direct consequence of non-retarded Coulombic longitudinal intermolecular interaction [51],
and is typically not described in terms of Green functions. Conversely, in the nanophotonic literature, energy
transfer in inhomogeneous media is often described in terms of Green functions, but the FRET contribution due
to longitudinal interactions is not singled out. The concept of the longitudinal Green function can serve to
bridge these two research fields. We identify the longitudinal Green function and hence Gg to describe the
instantaneous electrostatic intermolecular interaction of any inhomogeneous medium®. As explained below, it
isindeed this SDDI that gives rise to the FRET rate that characteristically scales as r,° in homogeneous media
and dominates the total energy transfer for strongly subwavelength donor—acceptor separations. By identifying
the generalized transverse and longitudinal parts of the Green function and relating them to energy transfer
processes, we provide a unified theory of radiative and radiationless energy transfer in inhomogeneous
dielectrics. Thereby we generalize the pioneering work on energy transfer in homogeneous media by Andrews
[51], who demonstrated that radiative and radiationless energy transfer are long-range and short-range limits of
the same mechanism.

Equation (8) also provides a practical way of obtaining the static Green function (that controls FRET) from
the total Green function, even if a complete set of modes has not been determined. The equation implies that for
arbitrary inhomogeneous environments the static part of the Green function is obtained from the total Green
function by the following limiting procedure (for r = r’)

1 ..
Gs(r, v, w) = — lim WwiG(r, ¥, w), 9)
W w—0
which provides a justification of our use of the term ‘static’. From equation (9), Gs appears as the non-retarded
near-field approximation of the retarded full Green function. As an important test, selecting in this way the static
part of the Green function of a homogeneous medium (A.1) indeed gives that only

0

4rntwr’

G s(rp, 1, w) = (I — 3t1), (10)
with r = 1, — r, contributes to Forster energy transfer, and not the terms of Gy, that varyas 1/r and 1/r2. This
leads to the characteristic FRET rate scaling as 1/r°. By contrast, for inhomogeneous media the static Green
function not only depends on the distance between donor and emitter, but also on the absolute positions of both
donor and acceptor in the medium. In section 5 (figure 2) we will illustrate for one example of such an
inhomogeneous medium (near an ideal mirror) that the total energy-transfer rate for donor—acceptor pairs
separated by a few nanometers is indeed fully determined by the static Green function as obtained by
equation (9). In contrast, this Green function is not of the well-known form (10) for homogeneous media.

Based on the discussion above and without loss of generality we define FRET in inhomogeneous media as
that part of the total energy transfer that is mediated by the static Green function. We also define the square of the
Forster transfer amplitude, in analogy to equation (2), by

™ w2 2
We (Tt T, W) = (—) [ - Gs(ta, 1g, w) - pgl®. (11)

7%\ goc?

This equation appears to be similar to equation (2), yet with the total Green function G replaced by its static part
Gg;, as defined in equation (8) and computed in equation (9). The FRET rate ~; is then obtained by substituting
we (L, 14, w) for w(x,, r4, w)into equation (1), giving:

Ve (s Tg) = f_ Y dw Oa (WY)WE (15, T4, W) g (W). (12)

Here we arrive at an important simplification in the description of Forster transfer in inhomogeneous media, by
noting that from equations (9) and (11), the quantity wg (r,, ¥4, w) is actually independent of frequency w. The
FRET rate 4 is then given by the simple relation

8 Inthe minimal-coupling formalism the Hamiltonian features an electrostatic intermolecular interaction that is absent in a multipolar
formalism [50], also for inhomogeneous media [52]. Instead, in the multipolar formalism, the electrostatic interaction is an induced
interaction that shows up in the Green function [49]. We note that both the RDDI and the SDDI in equation (8) have mode expansions that
involve all optical modes, corresponding to arbitrary positive eigenfrequencies w). The longitudinal Green function and hence Gs in
equation (8) can be expressed in terms of (generalized) transverse mode functions f) due to a completeness relation that involves both
longitudinal and transverse modes [49].
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Tl 1) = Wil 1) [ dw oy (@)an(w). (13)

While this expression looks similar to the approximate expression for the total energy transfer rate (equation (4)),
we emphasize that equation (13) is an exact expression for the FRET rate, also for broad donor and acceptor
spectra, valid for any photonic environment that is lossless and weakly dispersive in the frequency range where
the donor and acceptor spectra overlap. Moreover, the spectral overlap integral in equation (13) is the same for
any nanophotonic environment” . All effects of the nondispersive inhomogeneous environment are therefore
contained in the frequency-independent prefactor wg (r,, rg). In other words, while there is an effect of the
nanophotonic environment on the FRET rate as decribed by the medium-dependent static Green function, this
effect does not depend on the resonance frequencies of the donor and acceptor (for constant medium-
independent overlap integral in equation (13)). But because we have now found that the FRET rate does not
depend on the donor and acceptor frequencies, it also follows that the FRET rate can not be a function of the
LDOS at these particular frequencies.

4. FRET in terms of a frequency-integrated LDOS

Although the exact expression in equation (13) states that the FRET rate in a nondispersive nanophotonic
medium is independent of the LDOS at the donor’s resonance frequency, this fact leaves the possibility open that
there might be a relation between the FRET rate and a frequency-integrated LDOS. We will now derive such a
relation, thereby providing a new perspective on efforts to control the FRET rate by engineering the LDOS.

We start with the mode expansion of the Green function in equation (8) to derive a useful new expression,
relating the Forster transfer rate to a frequency-integral over Im[G]. We use the fact that Gg(r, r’, w) is real-
valued, asis provenin [52]. Thus the imaginary part of the Green function is equal to Im[Gg] and the mode
expansion of Im[G] becomes

Im[G(r, 1, w)] = —Z—szfx(r)ff(r’)(?(w — wy), (14)
LAY

with w > 0. We note that only degenerate modes with frequencies w) = w show up in this mode expansion of
Im[G]. This can also be seen in another way: the defining equation for the Green function equation (3) implies
that the imaginary part of the Green function satisfies the same source-free equation (7) as the subset of modes
f) (r) for which the eigenfrequency wy equals w. The mode expansion (14) is indeed a solution of equation (7).
Therefore, Im[G(r, r’, w)]and hence the LDOS and the spontaneous-emission rate (equation (5)) can be
completely expanded in terms of only those degenerate eigenmodes, in contrast to the energy transfer that
requires all optical modes, see equation (8).

When we multiply equation (14) by wand integrate over w, we obtain as one of our major results an exact
identity for the static Green function

Gl 1o ) = —— [ dwy wy Im[G(x,, 1 wp)]. (15)
W 0

This identity is valid for a general nanophotonic medium in which material dispersion can be neglected.
Equation (15) was derived using a complete set of modes, yet does not depend on the specific set of modes used.
When inserting this identity into equation (11), we express wp (w) and hence the FRET rate 4 of equation (12) in
terms of an integral over the imaginary part of the Green function. While this is somewhat analogous to the well-
known expression for the spontaneous-emission rate equation (5), there are two important differences: the first
difference between equation (15) for Forster energy transfer and equation (5) for spontaneous emission in terms
of Im[G]is of course that equation (15) is an integral over all positive frequencies. The second main difference is
that in equation (15) the Green function Im[G (r,, 14, w;)] appears with fwo position arguments—one for the
donor and one for the acceptor—instead of only one position as in the spontaneous-emission rate. A major
advantage of an expression in terms of Im[G] is that Im[G] does not diverge for r, — 14, in contrast to Re[G].
In appendix C we verify and show explicitly that the identity in equation (15) holds both in homogeneous media
as well as for the nanophotonic case of arbitrary positions near an ideal mirror.

We now use equation (15) to derive an approximate expression G§" for the static Green function Gg that
allows us to find an interesting relation between the FRET rate and the frequency-integrated LDOS. Our
approximation is motivated by the fact that Im[G (x4 — r,, w)]for homogeneous media (based on
equation (A.1)) varies appreciably only for variations in the donor—acceptor distance ryq, on the scale of the
wavelength of light, typically ry, ~ A¢ = 500 nm (with Ay = 27c/wy). From equation (A.6) it follows that the
same holds true for Im[G (ry, r,, w)]for the ideal mirror. In contrast, FRET occurs on a length scale of

9 5 - . . .
Let us recall here that o, (w) and o4 (w) are the donor’s emission spectrum and acceptor’s absorption spectrum in free space, see equation (1)
and [22,46].




10P Publishing

NewJ. Phys. 18 (2016) 053037 M Wubsand W L Vos

fga = 5 nm, typically a hundred times smaller. Motivated by these considerations, we approximate
Im[G(r,, 14, w;)]in the integrand of equation (15) by the zeroth-order Taylor approximation
Im[G(xy, t4, wy)]. The accuracy of this approximation depends on the optical frequency w. The approximation
will therefore not hold for all frequencies that are integrated over, and becomes worse for higher frequencies. But
itappears that we can make an accurate approximation throughout a huge optical bandwidth 0 < w; < Q. Ifwe
choose €2 = 10wy, i.e, a frequency bandwidth all the way up to the vacuum ultraviolet (VUV), then
Im[G(x,, r4, wy)] will only deviate appreciably from Im[G (rg, 14, w;)]for donor—acceptor distances
Taa > Ao/ 10, which is in practice of the order of 50 nm, much larger than typical donor—acceptor distances in
Forster transfer experiments. We obtain the expression for the approximate static Green function G{" as

(

2 Y
G(r,, 14, w=— ] dwrw Im[G(ry, 14, w))]

+ iz dw; wy Im[G(x,, 14, w)]. (16)
Tw? JQ

The first term of this equation is recognized to be an integral of the LDOS over a large frequency bandwidth,
ranging from zero frequency (or ‘DC’) to a high frequency 2 in the VUV range. While the specific value of 2
does not matter much, it is important that €2 can be chosen much greater than optical frequencies, while the
inequality 7 (rg) Qrg4,/c < 1still holds. Within this approximation, we can find an expression for the FRET rate
for donor and acceptor molecules with parallel (but not necessarily equal) dipole moments, i.e. p, = p, frand
= fy, fr. To this end, we substitute Gs for G{ in wy (equation (11)) and express the imaginary part of the
Green function in terms of the partial LDOS Py of equation (6), to obtain a new approximate transfer amplitude
squared

8M2N2 et 9
L) — _Mal’b | 1C N
WEg (ra) rd) - 778(2)52(34 6 L dwlpp (rd’ Wi, /,L)
o0 A A
= fQ dwy wi i - Im[G(xy, 14, wi)] - i . (17)

Justlike wg (r,, rq) in equation (11), its ‘LDOS approximation’ W}gL) (r,, rg) in equation (17) is independent of the
donor emission frequency. Substituting wr. in equation (12) with w{", we obtain an approximate'’ FRET rate

L
0r

W = w0 [ dw oy @), (18)

The approximate FRET rate ’y(FL) thus depends on the LDOS, albeit integrated over a broad frequency range from
zero to €2 (equation (17)). In section 5 we will give an example where this approximation is extremely accurate,

and we also explore by how much the integrated LDOS controls the FRET rate.

5. Energy transfer near a mirror

As a concrete example of our theoretical considerations, we study energy transfer from a single donor to a single
acceptor separated by a distance ry, = |r, — rq4| in the vicinity of an ideal mirror. To limit parameter space, we
focus on situations in which the donor and the acceptor have the same distance z to the mirror, and where the
dipole moments of dipole and acceptor point in the same direction. In the parallel (||) configuration shown in
figure 1(a), both dipole moments are oriented parallel to the mirror, and the dipoles point normally to the
mirror in the perpendicular (L) configuration of figure 1(b). In general, both the LDOS and the partial LDOS for
any dipole orientation are fixed once the partial LDOS is known for nine independent dipole orientations, but
for planar systems considered here, the two directions | and || suffice for a complete description [53].

For homogeneous media it is well known that Forster energy transfer dominates the total energy transfer at
strongly sub-wavelength distances, and we will now see that this is also the case in inhomogeneous media, by
means of the ideal mirror. The total energy transfer near an ideal mirror depends on the total Green function as
given in equations (A.7) and (A.8) for the two dipole configurations (see figure 1). For the donor and acceptor
near the mirror in the parallel configuration, we obtain for the static part

1ic? 1

1
drn?w? |rg,  ( [r2 + 422y

IJ'H : Gs(ra’ I4, w) : l'l'” = (19)

1971 the symbol ’)/(FL) the superscript L is meant to indicate a FRET rate in terms of the LDOS.
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parallel perpendicular

Figure 1. We study pairs of donor and acceptor dipoles that are separated by a distance 74,, and located at a distance z from an ideal
mirror. We focus on two configurations where the dipoles are oriented perpendicular to the position difference of donor and acceptor
(f1g> fr,) L(ra — r,): (Left) Both dipole moments of donor and acceptor are parallel to the mirror surface (‘parallel configuration’, ||)
and parallel to each other. (Right) Both dipole moments of donor and acceptor are perpendicular to the mirror surface (‘perpendicular
configuration’, 1) and parallel to each other.
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Figure 2. Ratio of the Forster resonance energy transfer rate to the total energy transfer rate (7y/7,,) versus donor—acceptor distance
74 for three distances z of donor and acceptor to the mirror. The upper panel is for dipoles parallel to the mirror, the lower panel for
dipoles perpendicular to the mirror. Note the logarithmic 4,, with dimensionless scaled values on the lower abscissa and absolute
distance in nanometers on the upper abscissa for A = 628 nm. The central colored bar indicates where various terms of the Green
function dominate, and to which process.

while for the perpendicular configuration we find

p - Gs(ry, o, w) - pt we J1 ! |3 (20)
- Gs(ra, 19, W) - =—175 - .
' dmn’w? | rg, (J7i, + 422)° rga + 422

Both these static interactions depend on the donor—acceptor separation 7y, as well as on z. In both cases the static
interaction in a homogeneous medium is recovered for FRET pairs at distances to the mirror much larger than
the donor—acceptor distance (z >> r4,). The spatial dependence of the Forster transfer amplitude of equation (11)
and of the FRET rate in equation (13) is hereby determined for both configurations.

5.1. FRET versus total energy transfer
In figure 2 we display the ratio of the FRET rate and the total energy-transfer rate as a function of donor—acceptor

distance, for three distances z of the FRET pair to the mirror, and for both dipole configurations''. For the total

" Here we take n = 1as wewill do inall figures below.
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Figure 3. FRET rate -y, divided by the total energy transfer rate -, versus distance to the mirror, for three values of the
donor—acceptor distance r4,. The lower abscissa is the dimensionless reduced distance, the upper abscissa is the absolute distance
in nanometer for A = 628 nm. Upper panel: parallel dipole configuration; lower panel: perpendicular dipole configuration.

rate we used the narrow bandwidth assumption of equation (4). For strongly sub-wavelength donor—acceptor
distances (rg,w/c < 0.1), we observe that the total energy transfer rate (4) equals the FRET rate (13),
irrespective of the distance to the mirror and of the dipole orientation. On a more technical level, figure 2
confirms that even in nanophotonic media, the total Green function (equation (8)) that features in the
expression for energy transfer can indeed be replaced by the static Green function (equation (9)) at typical
Forster-transfer distances, as was assumed in section 3.

When we increase the donor—acceptor distance beyond the Forster range (0.1 < rg,w/c < 2), figure 2
shows that the ratio of the two rates exceeds unity. To understand this behavior, we recall that energy transfer is
proportional to the absolute value squared of the total Green function. Here, the total Green function is no
longer accurately approximated by the static part. Instead, it is the sum of the static Gg and the radiative terms
Gy, of the total Green function (equation (8)) that has become relevant, and these two Green function terms start
to interfere. For donor—acceptor distances 7y, where the data exceed unity, the interference is destructive. The
interference occurs not only near a mirror, but also for homogeneous media, as one can readily verify. As a result
of the interference, one cannot express the total energy-transfer rate as the sum of a few partial rates, where the
Forster transfer rate would be one such partial rate.

Atlarge donor—acceptor distances (rg,w/c > 1), the FRET rate decreases much faster with distance than the
total transfer rate, similar as in homogeneous media. In this distance range, the energy transfer is radiative: the
donor emits a photon that is absorbed by the acceptor. Energy transfer on this larger distance scale is actively
studied for various nanophotonic environments [54—59]. In contrast, in the remainder of this paper we only
consider sub-wavelength donor—acceptor distances, as is the case for all FRET experiments mentioned in the
Introduction. The main message of figure 2 is that for these few-nanometer distances, the total energy transfer
rate (4) equals the FRET rate (13).

Figure 3 is complementary to the previous one in the sense that here the FRET rate is plotted versus distance
to the mirror z for several donor—acceptor distances r4,, and for both dipole configurations. We again show the
ratio of the FRET rate and the total transfer rate, using equation (4) for ;,. At donor—acceptor distances
faa = A/100and rg, = A/50, typical for experimental situations, we clearly see that FRET dominates the total
energy transfer rate, independent of the distance to the mirror. Atleast 98% of the total energy transfer rate
consists of the FRET rate. Even for a large donor—acceptor distance rg, = \/20 thatis much larger than in most
experimental FRET cases (corresponds to 74, = 31 nm at A = 628 nm), the FRET rate and the total rate differ
by only some ten percent. Thus, figures 2 and 3 illustrate that in the nanophotonic case near an ideal mirror, the
FRET dominates the total energy transfer at strongly sub-wavelength donor—acceptor distances, similar as in the
well-known case of homogeneous media.

5.2. Distance-dependent transfer rate
Figure 4 shows the total energy-transfer rate between a donor and an acceptor as a function of distance z to the
mirror. The panels show results for several donor—acceptor spacings 74, = A/100, A\/50, A/25.Inall cases, the
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Figure 4. Total energy transfer rate between a donor and an acceptor dipole, scaled to the free-space transfer rate, versus distance to
the mirror, for the parallel and perpendicular configurations. The lower abscissa gives the distance in scaled units, and the upper
abscissa absolute distances at a wavelength A = (27 x 100) nm = 628 nm. From top to bottom the three panels correspond to
donor—acceptor spacings rg, = A/100, A/50, A/25, where dipole-mirror distances equal to 74, are marked by vertical dotted lines
(off scale in the lowest panel).

total energy transfer reveals a considerable z-dependence at short range. In the limit of vanishing dipole-mirror
distance (z — 0), dipoles perpendicular to the mirror have a four-fold enhanced transfer rate compared to free
space. The factor four can be understood from the well-known method of image charges in electrodynamics: ata
vanishing distance, each image dipole enhance the field two-fold, and since energy transfer invokes two dipoles,
the total result is a four-fold enhancement.

With increasing dipole-mirror distance the rate in figure 4 shows a minimum at a characteristic distance that
is remarkably close to the donor—acceptor spacing z,i, = r4,. Atlarger distances z > ry,, the transfer rate
converges to the rate in the homogeneous medium. In appendix B it is shown that this convergence holds more
generally: away from surfaces or other scatterers, the FRET rate in an inhomogeneous medium is increasingly
proportional to 1/(n*rS,), with 1 the refractive index surrounding the donor—acceptor pair.

Figure 4 also shows that in the limit of vanishing dipole-mirror distance (z — 0), dipoles parallel to the
mirror have an inhibited transfer rate. This result can also be understood from the method of image charges,
since each image dipole reveals completely destructive interference in the limit of vanishing distance to the
mirror. With increasing dipole-mirror distance z the energy-transfer rate increases monotonously, and reaches
half the free-space rate at a characteristic distance that is also remarkably close to the donor—acceptor spacing
212 = T4, Atlarger distances z > 1y,, the transfer rate tends to the homogeneous medium rate. It is remarkable
that even in a simple system studied here a considerable modification of the energy transfer rate is feasible. Thus
the energy transfer rate between a donor and an acceptor is controlled by the distance to the mirror, and the open
question is whether this control can be understood as being mediated by the LDOS.

5.3. Energy transfer and LDOS
In figure 5, we display the distance-dependence of the energy transfer rate in comparison to the spontaneous-
emission rate, over more than three orders of magnitude in distance. The spontaneous-emission rate varies with
distance to the mirror on length scales comparable to the wavelength of light, as first discovered by Drexhage
[40]. In contrast, the energy transfer rates vary on dramatically shorter length scales, about one-and-a-half
(parallel configuration) to two (perpendicular configuration) orders of magnitude smaller than the wavelength
scale. This result indicates that if there is a relation between energy transfer rate and LDOS, it is not a simple
proportionality, as proposed in several previous studies.

To further investigate a possible relation between energy transfer rate and LDOS, figure 6 shows a parametric
plot of the energy transfer rate as a function of (donor-only) spontaneous-emission rate, where each data point
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Figure 6. Parametric plot of the scaled energy transfer rate versus scaled spontaneous-emission rate (or scaled LDOS, see top abscissa)
for a donor—acceptor distance r3, = /100, for dipoles perpendicular (red connected circles) and parallel (blue connected squares) to
the mirror. Data are from figure 5. The magenta horizontal line shows a constant transfer rate ~;, oc Njy, the black dashed curvea
linear relation 7, oc N4, and the green dashed curve a quadratic relation -y, oc N2.

pertains to a certain distance z to the mirror. The top abscissa is the relative LDOS at the donor emission
frequency that equals the relative emission rate. The data at a reduced emission rate less than unity correspond
mostly to the parallel dipole configurations in figures 4 and 5, whereas the results at higher emission rate
correspond to mostly to the perpendicular configurations in these figures. For a typical donor—acceptor distance
(raa = A/100), figure 6 shows that the energy transfer rate is independent of the emission rate and the LDOS
over nearly the whole range, in agreement with conclusions of [23, 32, 34, 38]. The energy transfer decreases fast
near the low emission rate edge and increases fast near the high emission rate edge, both of which correspond to
distances very close to the mirror (see figure 4). From figure 6 it is readily apparent that the energy transfer rate
does not increase linearly with the LDOS, leave alone quadratically, as was previously proposed.

Therefore, while both the spontaneous-emission rate and the FRET rate depend on the distance to the
mirror and hence differ from the corresponding rates in a homogeneous medium, we find no position-
dependent correlation between the two rates in figure 5 and no LDOS-dependent correlation in figure 6. These
results are related to the absence of a frequency-dependent correlation between the two rates that we derived in
section 3: if we keep the spatial positions (r,, rq) fixed while shifting the central frequencies of the donor and
acceptor spectra (wg, w,) by the same frequency (Aw), then the spontaneous-emission rate obviously changes
(see equation (5)) in response to a similar change in LDOS, whereas our equation (13) reveals that the position-
dependent FRET rate remains constant.

5.4. FRET and integrated LDOS
To verify the accuracy of the LDOS-approximated FRET rate 'y(FL) near the ideal mirror, we vary the frequency
bandwidth €2 over which we integrate the LDOS (see equations (17) and (18)). The required frequency integrals
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Figure 7. LDOS-approximated FRET rate V(FL) (equation (18)) normalized to the exact FRET rate ~y; (equation (12)) versus the
bandwidth €2 of the LDOS-frequency integral. Lower abscissa: €2 scaled by the donor frequency wyq = 2mc/ . Upper abscissa:
minimum wavelength Ay, = 2m¢c/€Q for A = 628 nm. Black full curves are for dipole-to-mirror distance z = /100, red dashed
curves for z = \/40, and blue dashed—dotted curves for z = \/2, all curves are for a donor—acceptor distance rg, = A/100. (a)
Parallel dipole configuration; (b) perpendicular dipole configuration. (c) Comparison of the LDOS-approximation (equation (18))
and the HF approximation (equation (21)) of the FRET rate as a function of LDOS bandwidth €. Rates are scaled to the exact FRET
rate, and the distance to the mirror and the donor—acceptor distance are fixed.

in equation (16) are calculated analytically in appendix D.2. In figure 7 we see that for both dipole configurations,
the approximate FRET rate indeed tends to the exact rate for vanishing {2 — 0. For Q up to 10wy, the
approximate rate is very close to the exact one, to within 5%. At even higher frequencies, up to €2 = 20wy, the
approximate FRET rate is within 10% of the exact rate, as anticipated in section 4 on the basis of general
considerations.

The validity of the approximate FRET rate ’y(FL) improves when the donor—acceptor distance ry, is reduced,
since the spatial zero-order Taylor expansion of Im[G] is then a better approximation. We can also improve the
approximation by reducing the frequency bandwidth 2 in which we make the Taylor approximation. Both

trends are indeed found in appendix D.1 where 'y;L) is calculated for the homogeneous medium. In the limit of a

vanishing frequency bandwidth ({2 — 0), the approximate Forster transfer rate 'y(FL)
transfer rate 7, of equation (12).

To verify that the approximate FRET rates shown in figure 7 were not ‘lucky shots’ for the chosen fixed
distances to the mirror, we study in the complementary figure 8(a) the accuracy of 'y(FL) as a function of distance
to the mirror z, for a constant LDOS bandwidth €2 = 10wy. The figure clearly shows the great accuracy of the
LDOS approximation, irrespective of the distance z of the FRET pair to the ideal mirror. For a narrower
bandwidth of 2 = 2wy, the accuracy is even better, as expected.

At this point, one might be tempted to conclude from figures 7 and 8 that the FRET rate is intimately related
to an integral over the LDOS. This conclusion is too rash, however, because the corresponding approximate
relation equation (18) consists of two integrals, where only one of them is an integral over the LDOS at the donor
position, while the other is a high frequency (HF) integral of the imaginary part of the Green function featuring
both donor and acceptor positions. Thus the relevant question becomes: what happens if we make a cruder
approximation to the FRET rate by simply removing the LDOS integral? Instead of equation (16) we then use the
HF approximation G to the static Green function

reduces to the exact Forster

2 o0
G{"(r, 1, w) = — j; o Im(G(n, 1, W) @1
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Thisleads to a HF approximation to the squared Forster amplitude
with = @m /77 (w/ (e0c?)* 1y - BF(Eay Ty w) - pagl? (22)

and a HF approximation to the FRET rate

YW = wx,, 1) f dw 0y (W) ag (W), &)

which is independent of frequency, similar as y; and M. In figure 7(c) the two approximated FRET rates W(FL)

F
and W(FHF) are compared for the ideal mirror as a function of the bandwidth €2, while keeping the donor—acceptor

distance rg, and the distance to the mirror z fixed. Indeed V;L) is the more accurate approximation of the two, yet
V(FHF) is not a bad approximation at all: by only integrating in equation (23) over high frequencies

Q > 10wy, V;HF) is accurate to within about 7%. If we take a narrower—ryet still broad—frequency bandwidth,
for example up to 2 = 2wy (in the UV), we still neglect the LDOS in the whole visible range. Nevertheless

figure 7(c) shows that for {2 = 2wy the two approximations ”y(FL) and V;HF) agree to a high accuracy with the exact
rate .. Therefore, figures 7 and 8 show that for the ideal mirror there is essentially no dependence of the FRET
rate on the frequency-integrated LDOS at visible frequencies, and only a weak dependence on the frequency-
integrated LDOS at UV frequencies and beyond. We note that this conclusion is complementary to the one in
section 3, where the FRET rate was found not to depend on the LDOS at one frequency namely at /xvg. In
addition, this conclusion that the FRET rate numerically is independent from the integrated LDOS is completely
consistent with our derivation that the LDOS approximation equation (17) for Forster transfer, featuring a

broadband LDOS integral, is accurate.

6. Discussion

We discuss consequences of our theoretical results to experiments, first regarding relevant length scales. We
have performed analytical calculations and plotted rates versus reduced lengths, namely the reduced distance to
the mirror zw/c = 2mz/ A and the reduced donor—acceptor distance 7y, / A. For the benefit of experiments and
applications, we have plotted in several figures additional abscissae for absolute length scales that pertain to a
particular choice of the donor emission wavelength \4. We have chosen

A4 = 27/wqg = 27 X 100) nm ~ 628 nm, a figure that we call a ‘Mermin-wavelength’ [63] as it simplifies the
conversion between reduced units and real units to a mere 100 x multiplication. Figure 2 characterizes the
donor—acceptor distance dependence of the transfer rate. It is apparent that Forster transfer dominates in the
range 74, < 20 nm, alength scale much smaller than the wavelength of light. Energy transfer is dominated by
radiative transfer in the range 73, > 100 nm, which is reasonable as this distance range is of the order of the
wavelength.

Figure 4 characterizes the distance dependence to the mirror. The range where both the total and the FRET
rates are controlled by the distance to the mirror is in the range z < 20 nm. This range is set by the donor—
acceptor distance that is for most typical FRET pairs in the order of 7y, = 10 nm, in view of typical Forster
distances of the same size [2]. Interestingly, while the energy transfer in this range (z < r4,) is not controlled by
the LDOS, the transfer rate is nevertheless controlled by precise positioning near a mirror. An example of a
method that could be used to achieve such control at optical wavelengths is by attaching emitters, such as
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molecules or quantum dots, to the ends of brush polymers with sub-10 nm lengths [60]. With Rydberg atoms, it
appears to be feasible to realize the situation z < ry,, albeit in the GHz frequency range [61].

How do our theoretical results compare to experiments? Our theoretical findings support the FRET-rate and
spontaneous-emission rate measurements by [32], where it was observed that Forster transfer rates are not
affected by the LDOS. Our findings also agree with the results of [23, 34, 36, 38]. In other experiments where a
relation between FRET and LDOS was found, this could be the case if the energy transfer is not dominated by
Forster energy transfer, or if the medium is strongly dispersive. Furthermore, our theory does currentely not
include typical aspects of experiments, such as incompletely paired donors, cross-talk between dense donor—
acceptor pairs, inhomogeneously distributed donor—acceptor distances, etcetera.

Let us turn to broadband LDOS control: in [23] qualitative arguments were given that FRET rates are a more
broadband property than the LDOS, namely that the energy transfer rate is determined by the electromagnetic
modes with the wave vectors of the order of 1 /r4,, while the density of states has contributions from all modes.
Here, we have provided quantitative support for this argument by deriving the relation (equation (16)) between
the static Green function and the integrated LDOS. This relation induces the new question whether FRET rates
can be controlled by the broadband frequency-integrated LDOS. Since we are not aware of experiments where
FRET rates are compared with frequency-integrated LDOS, we base our discussion on our present numerical
results for the ideal mirror. If one wants to control the FRET rate by manipulating the LDOS, then figure 7 shows
that one must control the LDOS over a huge bandwidth that ranges all the way from zero frequency (‘DC’) to a
frequency (2 that is on the order of ten times the donor emission frequency wy. If we consider the Mermin-
wavelength 628 nm, then the upper bound on the LDOS bandwidth corresponds to a wavelength of 63 nm,
deep in the vacuum ultraviolet (VUV) range. At these very short wavelengths, all materials that are commonly
used in nanophotonic control are strongly absorbing, e.g., dielectrics such as silica, semiconductors such as
silicon, or metals such as silver. In practice, the optical properties of typical nanophotonic materials differ from
their commonly used properties at wavelengths below 200-250 nm, which corresponds to 2 < 3wjy. Yet, even if
one were able to control the LDOS over such a phenomenally broad bandwidth 0 < € < 3wy, figure 8 shows
that the broadband LDOS-integral contributes negligibly—much less than 10~ >—to the Forster transfer rate. In
brief, if the ideal mirror is exemplary for arbitrary photonic media, which we think it is, then controlling the
FRET rate via the frequency-integrated LDOS seems rather unlikely.

In quantum information processing, FRET is a mechanism by which nearby (< 10 nm) qubits may interact
[15-20], intended or not. Lovett et al considered the implications of FRET between two quantum dots [17]. In
one implementation, it was found that it is desirable to suppress the Forster interaction to create entanglement
using biexcitons. In another implementation, it was found that FRET should not be suppressed, but switched in
time. There is a growing interest in manipulating the LDOS, either suppressing it by means of a complete 3D
photonic band gap [43], or by ultrafast switching in the time-domain [62]. It follows from our present results
that these tools cannot be used to switch or suppress FRET between quantum bits in this way. Conversely, our
results indicate that FRET-related quantum information processing may be controlled by carefully positioning
the interacting quantum systems (i.e, the quantum dots) in engineered inhomogeneous dielectric environments.

7. Conclusions

Motivated by the current debate in nanophotonics about the control of FRET—notably regarding the role of the
LDOS—we have studied FRET in arbitrary nanophotonic media with weak dispersion and weak absorption in
the frequency overlap range of donor and acceptor. This system has allowed us to obtain two new insights.

Firstly, we investigated the dependency of the FRET rate on the Green function. We argued that for the FRET
rate one only needs to consider the static part of the Green function (see equations (8) and (9)). Hence, the
Forster transfer rate (equation (13)) becomes independent of frequency, in contrast to spontaneous-emission
rates that are strongly frequency dependent in nanophotonic media, as mediated by the LDOS. It follows from
this result that the position-dependent FRET rate and the LDOS at the donor transion frequency are completely
uncorrelated for any nondispersive medium. Even for weakly dispersive media we expect this conclusion
to hold.

Secondly, we derived an exact expression for the FRET rate as a frequency integral of the imaginary part of
the Green function. This leads to very accurate approximation for the FRET rate in terms of a broadband
frequency integral over the LDOS (equation (18)), integrated over a huge bandwidth from zero frequency to far
into the UV, which offers a new perspective on the relation between the LDOS and the FRET rate.

Using an exactly solvable analytical model system of a donor and an acceptor near an ideal mirror, we have
seen that the FRET rate differs from the FRET rate in the corresponding homogeneous medium. For two
particular dipole configurations, we found that the FRET rate is inhibited (— 0) or markedly enhanced (by a
factor 4x). Thus, even this simple model system offers the opportunity to control energy transfer rates at

14



10P Publishing

NewJ. Phys. 18 (2016) 053037 M Wubsand W L Vos

distances close to the mirror, typically a few nm. Nevertheless, we find that the FRET rate is independent of the
LDOS at the donor emission frequency. Moreover, we observe that the FRET rate hardly depends on the
frequency-integrated LDOS. It is enticing that our general result that the FRET rate and the LDOS are
uncorrelated, is corroborated by the examplary system of the ideal mirror.

We also used the example of the mirror to test the approximate relation equation (16) of the FRET rate in
terms of the sum of the frequency-integrated LDOS and a second integral over UV frequencies and higher. We
verified that the approximation is indeed extremely accurate, as we anticipated. Remarkably, a detailed
quantitative consideration reveals that the broadband LDOS-integral in equation (16) contributes negligibly to
the FRET rate, while the FRET rate can be accurately approximated in terms of only the second (HF) integral, at
least for the specific medium considered here. So not only can FRET rates not be controlled by changing the
LDOS, as earlier theoretical and experimental work also showed, but FRET rates even seem to be practically
immune to changes in the frequency-integrated LDOS as well.

As future extensions of our work, it will be interesting to study the contribution of the integrated LDOS to
the approximate relation (equation (16)) for the FRET rate also for more complex photonic media, and whether
such an integral relation also holds for dispersive and lossy media. Finally, we have discussed the consequences of
our results to applications of Forster resonance energy transfer, for instance in quantum information processing.
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Appendix A. Green tensor for planar mirror

The Green tensor in a homogeneous medium with real-valued refractive index » is given by [64]

Gy, (11, 12, w) = Gy (r, W)

e” A 1

yo= [Pw)l + Q(w)t ® ] + 3(nw/c)26(r)|’ (A1)
wither = 1 — 1, the functions P, Q aredefinedas P(w) = (1 — w~! 4+ w—%)and
Qw) = (=1 + 3w~ ! — 3w~2),and theargument equals w = (inwr/c). For n = 1, Gy, equals the free-space
Green function, denoted by Gy. For distances much smaller than an optical wavelength (r < A = 27c/(nw)),
the Green function scales as Gy, (r, w) oc 1/(n?r?). From equations (1) and (2) we then obtain the characteristic
scaling of the Forster transfer rate as ;, oc 1/(n'rg,): the Forster transfer rate strongly decreases with increasing
donor—acceptor distance and with increasing refractive index. In contrast, it follows from equation (5) that the
spontaneous-emission rate -y, in a homogeneous medium is enhanced by a factor n compared to free space.
More refined analyses that include local-field effects likewise predict a spontaneous-emission enhancement [65].

Next, we determine the Green function of an ideal flat mirror within an otherwise homogeneous medium
with refractive index n. While the function can be found with various methods [45, 66], we briefly show how it is
obtained by generalizing the multiple-scattering formalism of [67] for infinitely thin planes. In the usual mixed
Fourier-real-space representation (k|, z) relevant to planar systems with translational invariance in the (x, y)-
directions, the homogeneous-medium Green function Gy, (k”, z, z', w)becomes

10 0 i /
Gi= |0 K k| 2@ 2 (A.2)
2 2
0 ks k)0 (/)

where the scalar Green function is given by g, = g, (k);, z, 7/, w) = expik,|z — Z|) /2ik,),

k, = (muz/c2 — kHZ) 1725, = sign(z — ') and the matrix is represented in the basis (8, p,, 2), where k is
the wave vector of the incoming light, Z is the positive-z-direction, § is the direction of s-polarized light (out of
the plane of incidence), and p, points perpendicular to Z in the plane of incidence. An infinitely thin plane at

z = 0 that scatters light can be described by a T-matrix T (k|, w), in terms of which the Green function becomes

G(Z’ Z/) = Gh(Z, Z/) + Gh(Z, O)T Gh(o) Z/)) (A3)
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where the (k|, w) dependence was dropped. It was found in [67] that for an infinitely thin plane that models a
finite-thickness dielectric slab of dielectric constant , the T-matrix assumes a diagonal form in the same basis as
Gy, in equation (A.2), in particular T = diag(T*, TP, 0). The infinitely thin plane becomes a perfectly reflecting
mirror if we choose for example alossless Drude response with e = 1 — wé / w?, in the limit of an infinite
plasma frequency w, — oo. Hence the T-matrix for a perfect mirror in ahomogeneous dielectric has nonzero
diagonal components T* = —2ik, and TPP = —2i(nw/c)?/k,. The ideal mirror divides space into two optically
disconnected half spaces, and below we only consider the half space z > 0. It then follows that the Green
function for the ideal mirror is written in terms of homogeneous-medium Green functions as
’ ’ ’ kjc ’ N As

G(z,z):Gh(z—z)—Gh(z—i—z)—ﬁ—Z(E) g, (z + 212z, (A.4)
where the (k|, w)-dependence of the Green functions was again suppressed. To understand energy transfer rates
near a mirror, we need to determine the Green function in the real-space representation, which is related to the
previous equation by the inverse Fourier transform

1
(2m)?

where p = (x, y)and p’ = (x/, y’)sothat r = (p, z). We find the Green function for an ideal mirror in a
homogeneous medium as the sum of three terms:

G, 1, w) = [ @K G z, 2, ke, (A.5)

G, r,w) =G, r,w) — Gu(p, z + 2, p/, 0, w) + 2G{*(p, z + 2, p/, 0, w)22. (A.6)
For the parallel configuration, we find
einwrda/c . einwu/c .
pl Gy, 1y, w) - pl = — 2 P(inwrga/c) + p? P(inwu/c), (A7)
4714 47u

where 74, is the donor—acceptor distance, z the distance of both dipoles to the mirror, and u = [r3, + (22)2]'/2,
and pll = py asin figure 1.
For the perpendicular configuration we find

einwrda/c inwu/c
2

P (inwra,/¢) — p2<
TTda 4mu

2
wt G, 1y, w) - = —p [P (inwu/c) + 4(3) Q(inwu/c)], (A.8)
u
with g = pZ asin figure 1 and u as in equation (A.7).
For completeness, we also give the known [66] single-emitter spontaneous-emission rates near the mirror
(neglecting local-field effects [65] here and below). For a dipole at a distance z oriented parallel to the mirror, we
find from equations (5) and (A.6)

3 [sin(a) + cos(a) Sin(a)]}, (A%a)
«

Yz, W) = Yeen (w){l -3 ~ b
in terms of v = 2nwz/c and the homogeneous-medium spontaneous-emission rate ., = p*nw’ / (B7/eyc?),
i.e, n times the spontaneous-emission rate in free space. For a dipole emitter oriented normal to the mirror, the

position-dependent spontaneous emission rate becomes

(@ W) = Yen (w){l - 3[“’520‘ - Smf]}. (A9)

(&% «

In thelimit z — 0, the rate fy!e(z, w) vanishes, while ’yi (z, w) tends to 27, ;.. In the limit z — o0, both
7!6(2, w)and 'yi (z, w) tend to the homogeneous-medium rate ~, en (W)-

Appendix B. Scaling with donor—acceptor distance of Forster transfer rate

Here we show that the homogeneous-medium Forster transfer rate, scalingas oc1 /(15 735, ), is an important
limiting case also for inhomogeneous media. Let us assume that the donor and acceptor are separated by a few
nanometer, experiencing the same dielectric material with a dielectric function &, within an inhomogeneous
nanophotonic environment. In all of space, we define the optical potential V(r, w) = —[e(r) — ep](w/c)?l, s0
that the optical potential vanishes in the vicinity of the donor—acceptor pair. Then the Green function of the
medium can be expressed in terms of the homogeneous-medium Green function and the optical potential as

Gt 1oy @) = Bi(ry — 1y w) + [ dri G — 11y ) - Vi, @) - Gry, 1oy ), (B.1)

which is the Dyson—Schwinger equation for the Green function that controls the energy transfer. The equation
can be formally solved in terms of the T-matrix of the medium as
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G(r, 1) = Gp(r, — 1rg) + fdrler Gp(r, — 1) - T(ry, 1) - Gp(r; — rp), (B.2)

where the frequency dependence was dropped for readability. The important property of the T-matrix

T (1}, 1, w) is now that it is only non-vanishing where both V(r) and V (r,) are nonzero, so that it vanishes in the
vicinity of the donor—acceptor pair. Thus the Green function that controls the energy transfer is given by a
homogeneous-medium Green function and a scattering term. The former is a function of the distance between
donor and acceptor, whereas the latter does not depend on the D—A distance, but rather on the distance of donor
and acceptor to points in space where the optical potential is non-vanishing.

As the donor—acceptor distance 4, is decreased, the homogeneous-medium contribution in equation (B.2)
grows rapidly, essentially becoming equal to G}, s (r, — 14, w) of equation (10), whereas the contribution of the
scattering term does not change much. So in the limit of very small r4,, or when making the distance to interfaces
larger, the homogeneous-medium term always wins, and one would find the well-known Forster transfer rate of
the infinite homogeneous medium oc1/(ny: 15,).

Appendix C. Tests of identity (15)

C.1. Test for ahomogeneous medium
The Green function G, (r, w) for homogeneous media is given in equation (A.1), and its static part by
equation (10). The identity (15) that relates them can be shown to hold as a tensorial identity; here we derive the
identity for its projection p - Gy, (r, w) - p, where we assume g to be perpendicular to r. (Physically, this
corresponds to energy transfer between donor and acceptor with equal dipoles both pointing perpendicular to
their position difference vector.) The projection of the identity (15) that we are to derive has the form

21 @21

drnw?rg,  2mintw?

1 f ' dwrwrIm e/ P (inwrg, /6)]. (C.1)
Tda Y0

Now by integration variable transformation the right-hand side of this equation can be worked out to give

sin(x) ]

X

122

fx dx[cos(kx) + x sin(kx) — (C.2)
0

212wy,
with dummy variable k equal to unity. Now the first two terms within the square brackets do not contribute to
the integral since ‘];OO dx cos(kx) = w6 (k) and fom dx x sin(kx) = —W;—ké (k), while the third term in the

square brackets of equation (C.2) does contribute since ‘f(‘) ™ dx sin (x)/x = /2. Thus the projection of the
identity (15)indeed holds for spatially homogeneous media.

C.2. Test for an ideal mirror

For the ideal mirror we again only consider a projection of the identity (15), first projecting onto dipoles
corresponding to the parallel configuration of figure 1. The Green function for the ideal mirror is given in
equation (A.6), and its static part for the parallel configuration by equation (19). Now for this parallel
configuration, the projected Green tensor consists of a homogeneous-medium and a reflected part, and so does
the projected static Green function. In section C.1 above we already showed that the sought identity indeed holds
for homogeneous media. So the remaining task is to show that the identity (15) holds separately for the reflected
parts of the projected Green functions. This is not difficult since mathematically the frequency integral that is to
be performed is the same as for the homogeneous medium; only the distance parameter r4, is to be replaced by
3 + 4z%. Thus the projection of the identity (15) onto the parallel dipole directions indeed holds. The
qualitative novelty as compared to the homogeneous-medium case is that we thus show that the identity holds
irrespective of the distance z of the FRET pair to the mirror. We also checked (not shown) that the identity (15)
holds for the projection onto perpendicular dipoles, i.e. as in the perpendicular configuration of figure 1.

Appendix D. Accuracy of the approximate expressions (16) and (23)

To test the accuracy of the LDOS approximation G(SL)(ra, 1y, w) of the static Green function, it is convenient to
use equation (15) to rewrite equation (16) as

2 Q

G{(r,, 1, w) = Gs(r, 14, W) + — fo dw; wi Im[G(ra, 13, wi) — G(ra 1a, w11, (D.1)
Tw

In this form, the approximate static Green function is equal to the exact expression plus an integral over a finite

interval of a well-behaved integrand. Likewise, to test the accuracy of the HF approximation G(SHF (1,, T4, W)

defined in equation (23) of the static Green function, it is useful to rewrite it as

17



10P Publishing

NewJ. Phys. 18 (2016) 053037 M Wubsand W L Vos

2 Q
GHO(r,, 14, w) = Gs(x,, 14, W) — — ), @ Im[G(r,, 1y, w)], (D.2)

Again the integrand is well-defined, i.e, non-diverging over the entire finite integration interval.

D.1. Accuracy of LDOS approximation for homogeneous media
We estimate the accuracy of equation (D.1) for the Green function (A.1) of ahomogeneous medium. By taking
the projection onto dipole vectors both on the left and right, we find

Q 2 Q 2
Irnf dwi wi - [Gr(xg, Ta, wi) — Gp (1, 1g, w)] - p = fﬁf dwwf[— - h(D)], (D.3)
0 4mc Jo 3

where D = nwd/c and for convenience we defined the function /1 (x) = cos(x)/x* + sin(x)(1 — 1/x%)/x.So
here (and also for the mirror below) we must determine integrals of the type

H(Q, a)= fQ dw wih(wia)
0
— (Q/A)[sin(A) — A cos(A) — Si(A)], (D.4)

where A = Qa and Si[x] = j; *dt sin(t)/t is the sine integral. For 2a < 1 we find the approximation
2 (Qa)y

2

H(Q,a) = =0 — D.5
(€2, a) 5 e (D.5)

With this result, we find that the relative error of making the LDOS approximation G%(ra, ry, w) of

equation (D.1) for the Green function Gy, s(r,, 14, w)is
S (GR — G o) -
B G B B 4 o e, (D.6)
K- Ghs - p 751

This fifth-power dependence shows that for homogeneous media the LDOS approximation is excellent as long
as ndrg,/c < 1, which for typical Forster distances of a few nanometers corresponds to a frequency bandwidth
Q of order 10w, in which the LDOS approximation can be made, where wy is a typical optical frequency (e.g., the
donor emission frequency).

D.2. Accuracy of LDOS approximation for the ideal mirror
For the parallel configuration near the ideal mirror, we find equation (D.3), but with the integrand on the right-
hand side replaced by

2
—M—nwf{[g - h(Dl)] - [hQ22Z) — h(Ul)]}) (D.7)

4mc

where Dy = nwi14./¢, Zy = nwyz/c,and U; = /D + 4Z}. So we can identify both a homogeneous-medium
and a scattering contribution between the curly brackets. By threefold use of the identity (D.4) it then follows
that 1 - (G{) — Gs) - pequals

“22”2 {[393 _ H(Q, ﬂ)] _ [H(Q zﬂ) _ H(Q, ﬂ)]} (D.8)
2w || 9 c c c

where u = \/rd, + 4z

For the perpendicular configuration near the ideal mirror, it can be found that the integrand of equation (D.3)
is instead replaced by the slightly longer expression

2 s 2 :
el — H2 2 (3 —2n(z) + zL‘(ZZ])) — WDy — h(Uy) — —= [z Sn(fh) _ 3h(U1)]
47c 3 27, ,rc%a 4 472 U,

(D.9)

The frequency integral can again be performed using the identity (D.4) and a standard integral of the type
f dx x sin(x). The resulting expression for g - (GgL) — Gs) - w, and the corresponding result (D.8) for the
parallel configuration are both used in figures 7 and 8.
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