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Abstract 

We study the optical absorption line shape for molecular aggregates in which the effect of the environment is mod&d 

by ;I stochastic fluctuation of the molecular transition frequencies. We argue that exchange narrowing of this disorder is 
not only possible in the static limit. but also in the fast-fluctuation limit. The latter is further investigated using numerical 
calculations for dichotomic noise. (’ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The collective optical properties of chromo- 
phores in molecular J-aggregates have drawn at- 

tention for many years already [1,2]. The Frenkel 
excitons in these systems may be coherently de- 
localized over a number of molecules that, depend- 
ing on circumstances. varies from less than 10 
to more than 50. The delocalization manifests itself 
in cooperative properties, like superradiant 

transitions [3] and exchange narrowing of static 
disorder [4,5]. The latter effect is generally 
believed to be responsible for the characteristic 
sharpness of the absorption band (J-band) of 

J-aggregates. 
Molecular aggregates are far from nicely ordered 

systems. They are generally studied in solution 
or in a glass. These hosts induce disorder in the 

molecular transition frequencies and (or) inter- 
molecular excitation transfer rates. In the case 
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of low-temperature glassy hosts, the disorder may 

be considered static. Indeed, the linear and nonlin- 
ear optical properties of J-aggregates under these 
circumstances are well-understood now in terms of 

a Frenkel exciton model with static diagonal dis- 
order [6.7]. Exchange narrowing then reduces the 

J-band width by a factor t.,‘Ndrl. where N,,, is the 
typical delocalization length of excitons at the 
lower band edge. 

For aggregates in solution, however, the situ- 
ation is less clear, as the dynamical nature of the 
environment then becomes important. This also 

holds for the biological molecular assemblies, like 
light-harvesting systems, that recently have attrac- 
ted a growing interest [8 -lo]. The dynamics of the 
Frenkel excitons in these assemblies are affected by 
the dynamics of the protein environment. Taking 
the dynamics of the surroundings into account 
without describing them in full detail, can in 
a simple but appealing way be done by generalizing 
the model of static disorder to one of stochastically 
fluctuating molecular frequencies [l 11 and (or) 
transfer rates (dynamic disorder). 
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For single molecules in solution, this level of 

modeling has been well-studied theoretically [12] 
and it has been used succesfully to describe optical 
experiments in dilute solutions [13,14]. The theor- 
etical treatment of coupled chromophores with 

stochastic frequency fluctuations, however, is com- 
plicated by the fact that three frequency scales play 
a role: the amplitude A and inverse correlation time 
A of the fluctuations, and the intermolecular excita- 

tion transfer rate J [15]. Only in the simplest case 
of white noise (3. large compared to both A and J), 

one can obtain exact solutions in closed form by 
using a cumulant expansion. In this b-correlated 
limit, the model reduces to the well-known 

Haken-Strobl model [16], where the excitons ob- 
tain a homogeneous dephasing rate given by 
r = A2/& independent of the aggregate size. Thus, 

the aggregate absorption spectrum is homogeneous 
with a width (HWHM) r that equals the width of 
the single-molecule spectrum. For interacting chro- 
mophores with colored noise (finite >_), it is much 
harder to obtain analytical results. Cumulant ex- 

pansions may still be useful [17] if the fluctuations 
are not too slow, but they are not exact. 

In an analysis of absorption, two-pulse echo, and 
pump-probe experiments on J-aggregates of 
TDBC in solution, Van Burgel et al. [18] recently 
posed the question whether exchange narrowing 
(i.e., narrowing resulting from intermolecular inter- 
actions) of dynamic disorder is possible in the fast- 
fluctuation limit. From the above, it is clear that in 
the white-noise limit such narrowing does not oc- 
cur. In this contribution, we will investigate this 

issue in more detail, by considering a fluctuation 
rate that is not necessarily large compared to the 

intermolecular interactions. In Section 2, we de- 
scribe the model and give an analysis of the prob- 
lem based on physical arguments. In Section 3, we 
present numerical results. Finally, in Section 4 we 

conclude. 

2. Model and physical discussion 

Our model aggregate is a ring of N identical 
two-level molecules, with transition dipoles 
p pointing in the direction perpendicular to the 
plane of the ring. The molecules are coupled by 

nearest-neighbor transfer interactions J and the 
effect of the environment is modeled by a stochastic 

modulation of the molecular transition frequencies. 
In the Heitler-London approximation [19]. the 
Frenkel exciton Hamiltonian for this system reads 

(h = l), 

N-l 

@r(r) = 1 [(a, + A,(t))b,t&, + J(6$,+ 1 
n=O 

+ &+ 1m. (1) 

Here, gf and 6, denote the Pauli creation and 
annihilation operator, respectively, for an excita- 
tion on molecule n, o. is the average molecular 

transition frequency, and A,(t) is the modulation of 
the frequency of molecule n at time t. 

We will assume that each molecule undergoes 

independent Gaussian frequency fluctuations with 
correlator 

(A,(t)A,(O)) = 6,,A2e-“. (2) 

Thus, A is the amplitude of the fluctuations, while 
i gives their inverse correlation time, which is de- 
termined by the frequency width of the bath modes 

that are responsible for them. 
For the case N = 1 (the monomer), this model is 

exactly solvable using the cumulant expansion 
[11,12]. In the static regime, A > I., the spectrum is 
Gaussian (inhomogeneous) with width A. In the 
fast-fluctuation regime, A < E., the spectrum is 
Lorentzian with width (HWHM) A2/E.. The latter 
decreases with increasing A, an effect that is known 

as motional narrowing. 

Let us now turn to aggregates (N # 1). Then, 
another narrowing effect, namely exchange narrow- 

ing is well known in the static limit (i = 0) [4,5]. In 
this limit, well-defined Frenkel exciton states exist. 
For weak disorder (A small), the energy of these 
states may be calculated perturbatively. For A = 0, 

the only exciton state that is observed in absorption 
is the totally symmetric Ik = 0) state, 

Ik = 0) = -l- 1 &>, 
& 

(3) 

where 1~) denotes the aggregate ground state, in 
which all molecules are in the ground state. To first 
order in A, the energy correction AkzO of this state 
relative to its zeroth-order value w. + 25 is simply 
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given by the average over the single-molecule in- 

homogeneities of the aggregate: 

As the d, are assumed uncorrelated Gaussian vari- 
ables, their average also is a Gaussian variable, 

with a width. however, that is reduced to A/,,/%. 

This immediately implies that the aggregate ab- 
sorption line is narrower than the distribution of 

monomer frequencies by a factor ,,/%. In practice, 

the physical size of aggregates and (or) the disorder 
is often too large to allow for this perturbative 

approach, and N should be replaced by the typical 
band-edge exciton delocalization length Ndel. 

We note that the effect called exchange narrow- 
ing here, is often also referred to as motional nar- 
rowing in the literature [5,18,20]. In view of the fact 

that the term motional narrowing is also used for 
the single-molecule line narrowing in the fast-fluc- 
tuation limit (vide supra), we prefer to reserve a dif- 
ferent name for the collective narrowing effect, 
caused by excitation transfer, that we are interested 
in here. It should be stressed that in the static limit, 

exchange narrowing preserves the Gaussian shape 
of the absorption lines (for small A), while motional 
narrowing in a single molecule always leads to 

Lorentzian lines. 
We now turn to dynamic disorder (finite jL) and 

wonder whether a similar simple picture as above 

may then be used to find exchange narrowing. The 
problem faced here, is that in the dynamic case we 
cannot define proper Frenkel exciton states. 

Rather, one is forced to work in a density matrix 
picture. Suppose. however, that i < J/N, so that 
the time scale of the fluctuations is still long com- 

pared to the time scale needed for an excitation to 
travel over the aggregate. Let us further restrict our 
consideration to the motional narrowing regime, 
d < i. so that the size of the fluctuations is no 
limitation for the excitation to spread. Thus, while 
the fluctuations are fast on the scale of l/A, they are 
slow on the scale of excitation transfer. Then we 
may still consider delocalized Frenkel exciton 
states, which adiabatically follow the fluctuations. 
Like in the static case, the exciton states at each 

time average over the molecular fluctuations and 

one simply finds that the exciton states undergo 
Gaussian fluctuations with rate i., just as a molecu- 
lar excitation. and with the narrowed amplitude 

A/,,%. 

It follows that, under the conditions considered, 
the aggregate has a Lorentzian absorption spec- 
trum of width A’j(Ni), which is seen to be nar- 

rowed by a factor of N compared to the monomer 
case. In other words, the motionally narrowed 
monomer line is further narrowed because of the 

interactions between the molecules: exchange nar- 
rowing. The effect is even stronger than in the static 

regime, where we found a narrowing factor of V%. 

It is clear that, even in the motional narrowing 
regime (where A is necessarily restricted in size). the 
aggregate length and (or) the value of i,‘J for which 

the above picture holds is restricted. If the aggre- 
gate becomes too large or the fluctuations are too 
frequent, the excitation cannot sample all N mol- 
ecules before fluctuations take place. The 1 /N nar- 
rowing should then be expected to break down. 
Increasing N while keeping &J constant. the 

amount of narrowing should be expected to satu- 
rate at some aggregate length. As we noted in the 
Introduction already, it also is clear that if i >> J, no 
exchange narrowing of the motional narrowing line 
can occur. i.e., the saturation occurs at N = I al- 
ready. Our numerical results presented in the next 

section confirm these expectations. 

3. Numerical results 

In this section, we report results of numerical 
simulations that illustrate the effect of exchange 
narrowing of fast fluctuations. Instead of Gaussian 
noise, we will consider dichotomic fluctuations 
[21.22]. For this type of fluctuations. A,(t) stochas- 

tically switches between two discrete values. + A 

and - A. with average jump rate i. Thus, its 

two-time correlation function decays according to 
Eq. (2). Higher correlation functions for fluctu- 

ations on one molecule vanish for an odd number 
of fuctuations and for an even number they read 

(‘4,(t,)d,(rz) ... A,(rz,.- i)&(r,,.)) = (‘4,,(t,)A,,(r2)) 

... (dn(r~a- ,)A,I(r2\,)) (5) 
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(tl > t2 > ..’ > f2,,_ i > tZv). The advantage of 
dichotomic noise is that the linear absorption spec- 
trum, in principle, may be calculated from a finite 
hierarchy of linear equations of motion while in the 
motional narrowing limit (d <<>“) it gives the same 

line shapes as the full Gaussian model. 
Reineker, Barvik and co-workers [21,22] have 

shown that a closed hierarchy of N2N linear equa- 
tions of motion can be derived that describes the 
absorption spectrum for an aggregate of N molecu- 

les. The variables in this hierarchy are stochastic 
averages of the product of a one-particle Green 
function at time t and an arbitrary number of 
molecular fluctuations at r. The hierarchy closes, 

because for any n and any t, (A,(t))’ = A’. The steep 
increase of the size of this set with growing N 

strongly restricts the possibility to investigate the 
dependence of the spectrum on N, which is required 
to study the effect of exchange narrowing. Calcu- 
lations published thus far have been restricted to 
hexamers (N = 6) and smaller. By taking advan- 
tage of our ring structure (periodic boundary con- 
ditions) and the translational invariance of stochas- 

tic averages, this hierarchy may be reduced to a set 
of 2” equations [23]. Using this smaller set, we have 

studied aggregates upto the nonamer (N = 9). 
Fig. 1 shows the numerically calculated absorp- 

tion spectra for the nonamer with d = 0.5J and 
i/J from left to right taking the values 0.003, 0.03, 
0.5, and 2. At small i we are in the static regime 
(both relative to d and to J). The spectrum then 
simply shows the dense collection of discrete peaks 
due to the various optically allowed exciton states 

that are possible in aggregates with two randomly 

__lL 

distributed types of molecules (oO + d). For larger 
E, the discrete lines broaden and merge into one 
peak, which gets narrower with growing i as soon 

as the motional narrowing regime (j_ > d) is en- 
tered. For other values of N or A, similar effects are 
seen [21l231. Here, we focus completely on the 
behavior of the line width of the spectrum in the 
motional narrowing regime. 

Consider, for example, the third panel of Fig. 1 

(A = i = 0.5J). The HWHM of this peak can be 
estimated to be 0.1 J, which is a factor of 5 smaller 
than the monomer width of A2/h This clearly indi- 

cates exchange narrowing. We have investigated 
this more systematically, by measuring (in the 
motional narrowing regime) the width W 
(HWHM) of numerically obtained spectra as a 
function of L/J and N. Let us define an exchange 
narrowing factor F, through the relation 

Thus, F, indicates how much the peak width is 
decreased due to the intermolecular transfer inter- 
actions. 

Fig. 2 shows a plot of the thus obtained narrow- 
ing factor for aggregates of N = 3,6, and 9 molecu- 
les as a function of i/J, while keeping the ratio A2/1. 
(the monomer line width) constant at 0.5J. As is 
observed, for all three values of N, the narrowing 
factor equals unity for 1/J>> 1. This is what we 

expected (white-noise limit). If l/J is decreased, 
however, the narrowing factor increases and this 
growth is faster for larger aggregates. In the case of 

l-l 
4 

Fig. 1. Numerically obtained absorption line shapes for a ring aggregate of N = 9 molecules, all of which undergo independent 
dichotomic frequency fluctuations. The amplitude of the fluctuations is kept constant at A = OSJ, while the fluctuation rate increases 

from left to right through the values 2/J = 0.003, 0.03, 0.5, and 2. 
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Fig. 7. The exchange narrowing factor as a function of ;.. J. 
ohtained by measuring the absorption line width W in numer- 

ically calculated spectra and using Eq. (6). At each value of i, 

A was chosen such that A’:?. = 0.5J. giving a constant monomer 

line width (HWHM) of OSJ in the motional narrowing regime. 

The solid line refers to N = 3. the dotted line to hi = 6. and the 

dashed line to N = 9. 

the trimer (N = 3), the narrowing factor is close to 
3 for the smallest i/J values, which agrees with our 

predictions in Section 2 [24]. In the case of the 
hexamer and the nonamer, the narrowing factor 
does not quite reach the value N: the aggregates are 
still too large for the considered A/J values to use 
the adiabatic exciton picture for the entire aggre- 
gate. Still further decreasing L/J, however, would 

move us out of the motional narrowing regime for 
the d’,‘i, value of OH that we consider. Neverthe- 
less, Fig. 2, clearly demonstrates that exchange 
narrowing in the motional narrowing regime is 
possible and suggests that, indeed, the narrowing 
factor for small aggregates and small R/J values 

tends to the aggregate size N. 
Analytical results, derived by truncating the hier- 

archy of equations of motion, confirm the l/N 
narrowing for small aggregates and small j./J 
values and show how the exchange narrowing fac- 
tor F, saturates if N gets too large. These results, as 
well as a full account of the hierarchy of 2” equa- 
tions of motion that we used in the numerical 
calculations, will be published elsewhere [23]. 

4. Concluding remarks 

We have studied the absorption spectrum of mo- 
lecular aggregates in which the molecules undergo 
stochastic frequency fluctuations. We have argued 

and shown by numerical calculations that exchange 
narrowing of the absorption line shape (i.e.. collec- 
tive narrowing due to the intermolecular transfer 
interactions) occurs not only in the static limit 
(j. < d), but also in the motional narrowing regime 
(i, > d). In the latter case, the fluctuations should 
not be fast compared to the excitation transfer (.I). 
in order to see exchange narrowing. Even for 
ijJ = 1, however, this type of narrowing still plays 
a role, as is clear from Fig. 2. Our results answer 
affirmatively the question recently put forward by 

the authors of Ref. [18], namely whether exchange 
narrowing can occur in the fast-fluctuating limit. 

The arguments presented in Section 2 show that 

for small aggregates the exchange narrowing in the 
fast-fluctuation limit occurs with a factor N. where- 

as in the static limit, the narrowing factor is c 1 u . 
In both limits, however. this may be traced back to 
the same reduction of the fluctuation amplitude ex- 

perienced by the excitons by a factor of L x. The 
difference is that in the static limit the line width 
eventually is proportional to the amplitude itself, 
while in the fast limit it is proportional to the 
amplitude squared. It should be noted that this 

lit % scaling of the average fluctuation amplitude 
only holds if the frequency fluctuations (static or 

dynamic) on different molecules are uncorrelated 
[4.5.25]. 
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