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1. Introduction

Quantum systems with well-isolated two-level subsystems that
can be addressed independently, with states that can be initialized
and manipulated, enjoy much interest nowadays because of possi-
ble use as quantum bits in quantum information processing. Quan-
tum-state manipulation is usually described by time-dependent
Hamiltonians, and the time-dependent (driving) part of the Hamil-
tonian can either be weak or strong. Weak driving is the default sit-
uation, but here the focus will be on strongly driven quantum
systems.

In the weak-driving regime, the effect of faster and larger-
amplitude driving may be the same as of slow small-amplitude
driving, as only the area under the pulse is important. This is well
known for example for p-pulses, which are used to invert the pop-
ulation of a qubit. Since decoherence sets the time scale within
which quantum information processing should occur, it is then a
good idea to speed up quantum state manipulation by making
pulses shorter, with an amplitude of the pulses that grows con-
comitantly to keep the same pulse area. This strategy works until
the peak amplitude grows so large that the driving can no longer
be considered weak, and the dynamics becomes more complex.

Nevertheless, it may be a good idea to go to the strong-driving
regime to seek new ways to manipulate qubits fast compared to
the decoherence time [1]. The strong-driving limit has not been
studied extensively in a quantum information perspective. Impor-
ll rights reserved.
tant was the discovery of dynamical decoupling of open quantum
systems from their environments [2,3]. The recent advent of novel
types of qubits with strong couplings to cavities and external fields
naturally drives the interest in strongly driven quantum systems,
for example in the context of amplitude spectroscopy of supercon-
ducting qubits [4–7] and optomechanical systems [8].

Actually, the interest in strongly driven quantum systems dates
back before quantum information theory. The strong-coupling re-
gime was studied for example in chemical physics, in order to con-
trol a molecular reaction by intense laser pulses [9,10]. Many
strongly driven quantum systems exhibit common phenomena
for which there is no analogy in the weak-driving limit. One such
universal phenomenon is coherent destruction of tunneling (CDT),
which was discovered theoretically and explained in 1991 by
Grossmann, Dittrich, Jung and Hänggi [11,12]. For a qubit, it is
the phenomenon that a tunneling between the two quantum states
is brought to a standstill by strong driving, but only for specific val-
ues of the quotient of driving amplitude and frequency (details gi-
ven below). For other parameter values, the tunneling amplitude is
renormalized, though not ‘destructed’, due to the driving. An expla-
nation of CDT in terms of destructive interference of multiple Lan-
dau-Zener-Stückelberg transitions was given by Kayanuma soon
after [13], see also [14,15].

CDT is currently actively studied in several subfields of physics.
Here I only mention a few recent developments. The recent single-
particle tunneling experiment on strongly driven metastable argon
in optical double-well potentials [16] is a very direct observation of
CDT, and close in spirit to the original theoretical papers [11,12].
Very interesting are recent many-body generalizations of CDT,
both theoretical predictions [17–21] and experimental demonstra-
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tions [22,23]. For example, for a driven Bose–Einstein condensate
in a double well, many-body CDT phenomena are predicted that
sensitively depend on the number of particles that have already
tunneled [20]. Furthermore, for Bose–Einstein condensates in sha-
ken optical lattices, it was predicted [17] and shown experimentally
[22] that the shaking-induced renormalization of the tunneling
parameter enables the switching between the superfluid and the
insulator state. Interesting is also the recent proposal for routing
of quantum information by employing coherent destruction of tun-
neling in chains of qubits [21]. Moreover, coherent destruction of
tunneling is also seen in optics, in particular in coupled-waveguide
structures [24,19,25,26], for which the coupled spatial wave equa-
tions have the same mathematical form as the temporal equations
of motion for quantum systems exhibiting CDT [27]. Further work
on CDT can be found in the reviews [28–30].

The standard system for observing CDT is a harmonically driven
two-level system. With fast manipulation of qubits in mind, here
we consider driving by pulses instead, allowing for several types
of pulse envelopes, and discuss the possibility of observing and
exploiting CDT for quantum information processing in this more
complex case. Related work on pulsed systems can be found in
[9,10,4,31].

We then apply our analysis to nitrogen-vacancy (NV) center
spin qubits in diamond strongly driven by microwave pulses. This
is a very promising type of solid-state qubit for several reasons
[32]. For example, its coherence time is long even at room temper-
ature, and its state can be initialized by optical pumping. And one
can transfer its state to even longer-lived nuclear spins [33,34]. NV
center spin qubits may become building blocks of a quantum re-
peater [35]. Achieving coherent coupling between NV centers
and superconducting flux qubits is another exciting possibility
[36].

Although our results are general, the very recent measurements
by Fuchs et al. [1] have shown a great level of control of the fast
and strong microwave pulses by which NV center spin qubits can
be prepared in desired quantum states, and were the main motiva-
tion for carrying out the research presented here. We discuss under
what circumstances CDT in NV center spin qubits could be ob-
served, and present analytical results that can be of help to prepare
final quantum states using short resonant pulses.

The structure of this article is as follows. We introduce our
model in Section 2 with dynamics and some approximations. This
is followed by the exploration of CDT phenomena in strongly
pulsed qubits in Section 3. The approximate treatments and
numerically exact results are compared in Section 4. The choice
of optimized pulses is briefly discussed in Section 5. The applica-
tion of the analysis to nitrogen-vacancy centers in diamond can
be found in Section 6, before the conclusions in Section 7.

2. Qubit driven by a strong pulse: model, dynamics, and
approximations

2.1. Model and equations of motion

Consider a two-level system with states fj0i; j1ig driven by a
pulse, as described by the Hamiltonian

HðtÞ ¼ hzðtÞrz þ hxrx

¼ �h
2
½x0 þ VðtÞ�rz þ �hDrx

¼ �h
x0=2þ VðtÞ=2 D

D �x0=2� VðtÞ=2

� �
; ð1Þ

where x0 is the energy difference and D the interaction strength be-
tween the two states of the undriven qubit, and VðtÞ ¼ AðtÞ cosðxtÞ
is the driving field with frequency x and pulse envelope AðtÞ. The
rx;z are Pauli operators, with rx defined as j0ih1j þ j1ih0j and
rz ¼ j1ih1j � j0ih0j. For vanishing driving amplitude or as long as
AðtÞ is still identically zero after the initial time t0, the Hamiltonian
(1) is constant and describes simple tunneling dynamics with sinu-
soidal population exchange between the two levels at a frequencyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
0 þ 4D2

q
. For x0 ¼ 0, the excited-state population P1ðtÞ varies be-

tween 0 and 1, but if D=x0 � 1, then the excited-state population
stays negligible before the driving is switched on. For AðtÞ ¼ A con-
stant, the driving is harmonic, and Eq. (1) in the particular case of
constant-amplitude driving will be referred to as the CDT Hamilto-
nian in standard form, or standard CDT Hamiltonian. With the goal
in mind of fast interactions with qubits, in the following we con-
sider instead the qubit dynamics under strong driving with short
pulses.

With the help of the time evolution operator U0ðtÞ ¼
exp½�ði=�hÞrz

R tdshzðsÞ�, an interaction picture can be defined in
which the Hamiltonian ~HðtÞ is given by Uy0ðtÞDrxU0ðtÞ. In matrix
representation for the state j~wðtÞi ¼ c1ðtÞj1i þ c0ðtÞj0i, the coupled
equations of motion for the two coefficients become

i
_c1

_c0

� �

¼
0 D exp 2i=�h

R tdshzðsÞ
h i

D exp �2i=�h
R tdshzðsÞ

h i
0

0
B@

1
CA c1

c0

� �
;

ð2Þ

where the dots denote time derivatives. These coupled equations of
motion can be solved numerically without further ado, but some
striking features of the dynamics can be understood after only a lit-
tle more analysis.

2.2. Rotating-wave approximation

Driving with a pulse adds some complexity to the dynamics as
compared to harmonic driving. To keep the presentation as simple
as possible, let us first choose a very convenient pulse shape, obtain
some analytical results, and then argue that the results can be gen-
eralized to other pulses. We choose the simple envelope function
AðtÞ ¼ ApðtÞ, with maximum amplitude A and dimensionless pulse
shape function pðtÞ ¼ expð�jtj=spÞ, a two-sided exponential with
decay rate s�1

p . In this particular case, the integral in the exponents
of Eq. (2) exactly becomes

2i=�h
Z t

dshzðsÞ ¼ ix0t þ i cosðvÞAðtÞ sinðxt � vÞ=x

with v ¼ arctan½1=ðxspÞ� and � ¼ �t=jtj: ð3Þ

The amplitude A is reduced by a factor cosv, and v also shows up as
a phase factor. Our convenient pulse shape enables us to proceed as
in the analysis of CDT for harmonic driving by using the mathemat-
ical identity known as the Jacobi–Anger expansion,

eix sin a ¼
X1

n¼�1
JnðxÞeina; ð4Þ

where Jn denotes as usual a Bessel function of the first kind. The
upper-right matrix element ~H10 in Eq. (2) then becomes

D
X1

n¼�1
Jn½cosðvÞAðtÞ=x�e�inveiðx0þnxÞt; ð5Þ

where the � signifies that the phases in expð�invÞ flip sign at t ¼ 0.
We have not made approximations yet. We will make one now,
based on the widely different time dependencies of the terms in
the expansion (5). One can choose the driving frequency x such
that there is an n-photon resonance, i.e. x0 þ nresx ¼ 0 for some
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integer nres, and zero- and one-photon resonances ðnres ¼ 0;�1Þ are
most common. For harmonic driving this makes the nres-term sta-
tionary, while all others oscillate. All other terms can be neglected
when even the slowest other terms, the ðnres � 1Þ-terms, average
out on the interaction time scale D�1. This is a rotating-wave
approximation (or RWA) and for harmonic driving it is valid if
x� D. Throughout this paper we will indeed make this assumption
of high-frequency driving.

In our case of pulses, the situation is slightly more complex,
since the Bessel-function coefficients have become time-depen-
dent, including the resonant nres term. For slowly-varying pulses,
the almost-stationary term will vary much slower than all other
terms, and it is intuitive that it is still a good approximation to keep
only this term. For very short pulses containing only a few oscilla-
tions, the validity of the approximation of keeping only one time-
dependent term is not so clear, and we will test it numerically be-
low. (A thorough discussion of the RWA of pulsed systems could be
given using an adiabatic theorem for Floquet–Bloch states [9,30].)
The RWA dynamics is described by the equations of motion

i
_c1

_c0

� �
’ DJnres

cosðvÞAðtÞ=x½ �rx
c1

c0

� �
; ð6Þ

where we got rid of phase factors by defining ~c1 ¼ exp½�inresv=2�c1

and ~c0 ¼ exp½�inresv=2�c0, and then leaving out the tildes [37]. As in
the standard analysis of CDT, we see that due to the strong resonant
driving, the interaction D is replaced by an effective interaction
strength Deff ¼ DJnres

½cosðvÞAðtÞ=x�. Since the Bessel functions are
bounded by unity, the effective interaction is always smaller.

For harmonic driving, coherent destruction of tunneling is a
vanishing effective interaction, Deff ¼ 0. It occurs for those specific
values of A=x for which Jnres

ðA=xÞ vanishes, and recall that nres was
fixed by our choice of resonant driving frequency x. Actually the
name coherent destruction of tunneling is usually reserved for
the case nres ¼ 0 and x0 ¼ 0, where it is the driving x� D that
stops the tunneling that otherwise exists between the two undri-
ven degenerate energy levels. Here the name CDT will be more
generally used for situations where Deff ¼ 0, even if for resonant
driving with nres – 0, tunneling is also already suppressed without
driving since x0 � D.

The essential difference for our pulsed driving is of course that
the effective interaction Deff ðtÞ ¼ DJnres

½cosðvÞAðtÞ=x� has become a
time-dependent quantity. This means that coherent destruction of
tunneling will not occur at all times. Rather, as the pulse amplitude
is varied from zero to a large maximal value A� x and back, then
Deff ðtÞ vanishes at those instances in time at which the Bessel func-
tion vanishes. This phenomenon could be called instantaneous
coherent destruction of tunneling, or ICDT, and will be studied in
Section 3. Central result of this section is the equations of motion
(6), obtained for the double-sided exponential pulse shape, with
the RWA as the only approximation needed to get there.

2.3. Slowly-varying envelope approximation

Now let us see whether the results of Section 2.2, which were
obtained for a particular pulse shape, carry over to more general
pulses. Recall that we did the integral

R tdshzðsÞ and the resulting
Eq. (7) that we obtained for the two-sided exponentially decaying
pulse depended on a parameter v ¼ arctan½1=ðxspÞ�. Now if there
are many oscillations per pulse, then xsp is much larger than unity
and v will almost vanish. But if we take the limit v ¼ 0 in the exact
solution (7), then we find

hzðtÞ ¼
1
2

Z t

dsfx0 þ AðtÞ cosðxtÞg

! x0t=2þ AðtÞ sinðxtÞ
2x

for xsp !1: ð7Þ
Notice that there is a simpler way of obtaining the approximate re-
sult on the right-hand side, namely by taking the amplitude AðtÞ out
of the time integral on the left-hand side as if it were a constant.
This is a slowly-varying amplitude approximation (or SVAA). For
the double-sided exponential pulse we will now derive the condi-
tion under which the RWA plus SVAA approximated dynamics is
close to the exact dynamics, for a large but not infinitely large num-
ber of oscillations ðxsp � 1Þ. We can make a Taylor expansion to
first order in v of the left-hand side of Eq. (7). This gives the approx-
imate result on the right-hand side of Eq. (7) plus a term
�AðtÞ cosðxtÞv=x. We require the latter to be small at all times,
which gives for the double-sided exponential pulses the following
combined condition for the SVAA dynamics to be accurate:

xsp � 1 and A=x� xsp: ð8Þ

Clearly, the second condition on the scaled amplitude A=x is only
very weak once the first condition is satisfied.

We will now generalize our results to other pulse shapes, by
assuming that Eq. (8) gives the sufficient conditions under which
the SVAA gives accurate results for all smooth pulse shapes AðtÞ,
where sp denotes the typical duration of the pulse. In Section 2.2
above Eq. (6) it was argued qualitatively that the RWA would be
valid if the pulses are slow enough. For the validity of the SVAA
we now find the more quantitative conditions (8). It will be
checked in Section 4 below that this condition also makes the
RWA (6) valid for pulsed qubits, at least in combination with the
standard RWA condition D=x� 1. After making both approxima-
tions, and by following the same reasoning as in Section 2.2, the
equations of motion assume the strikingly simple form

i
_c1

_c0

� �
’ DJnres

½AðtÞ=x�rx
c1

c0

� �
; valid for x� D; s�1

p ;
ffiffiffiffiffiffiffiffiffiffi
A=sp

q
:

ð9Þ
If the driving field would have been taken as proportional to
cosðxt þ /Þ instead of cosðxtÞ, then this nonzero driving phase /
at time t ¼ 0 would lead to phase factors expð�in/Þ that can be ab-
sorbed in a redefinition of c0;1 in the same way as we dealt with the
phase factors expð�invÞ in Section 2.2. Therefore, the equations of
motion (9) describe the approximated dynamics irrespective of
the value of the static phase /. Our simple description would have
lost some of its appeal if this had not been the case, since static
phases are often hard to control experimentally.

The main results of this subsection are the approximate equa-
tions of motion (9), in which the scaled amplitude A=x should sat-
isfy the weak condition (8), but otherwise is a free parameter. Thus
the regime of strongly pulsed resonant driving is ready to be
explored.

2.4. Analytical solution of the approximated dynamics

The coupled equations of motion (9) obtained after RWA and
SVAA allow a solution in closed form:

c1ðtÞ ¼ �k1 exp½iUðtÞ� þ k2 exp½�iUðtÞ�; ð10Þ
c0ðtÞ ¼ k1 exp½iUðtÞ� þ k2 exp½�iUðtÞ�; ð11Þ

where k1;2 are constants that are fixed by the state of the qubit at
the initial time t0. Furthermore, in the exponents appears the
dynamical phase factor

UðtÞ ¼ D
Z t

t0

ds Jnres
½AðsÞ=x�: ð12Þ

Unless stated otherwise, we will assume that the qubit starts in its
ground state j0i, in which case k1;2 ¼ 1=2 and the excited-state pop-
ulation becomes

P1ðtÞ ¼ sin2½UðtÞ� for jwðt0Þi ¼ j0i: ð13Þ
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As we will see, this solution in closed form can be of considerable
use. For example, in order to create desired final qubit states with
the help of strong short pulses, one can employ Eqs. (12) and (13)
to optimize the pulse shapes AðtÞ, as will be explored in more depth
in Section 5.
3. Instantaneous coherent destruction of tunneling of a
strongly pulsed qubit

In Section 2.2 it was anticipated that in strongly driven pulsed
quantum bits a phenomenon called instantaneous coherent
destruction of tunneling (ICDT) would occur. Here we will explore
that further. In Fig. 1, a pulse containing many resonant oscillations
(x ¼ x0) rises linearly from zero to a maximum amplitude in the
strong-coupling regime (A=x� 1) after which it falls back to zero
with the same constant but now negative slope. In the weak-cou-
pling regime, the oscillations of the qubit population would be-
come faster as AðtÞ grows, but the figure shows that this is
certainly not the case during this stronger pulse. Rather, the rate
of the oscillations is seen to correlate with the value of
J�1½AðtÞ=x� (or, equivalently, with �J1½AðtÞ=x�), which is in accor-
dance with Eq. (9).

In particular, at the times that this Bessel function vanishes, the
population dynamics is temporarily brought to a standstill. This
lasts for only short while, as the pulse amplitude keeps on chang-
ing, and the term instantaneous coherent destruction of tunneling
indeed seems appropriate for the phenomenon seen in Fig. 1. If one
zooms in on the dynamics around an ICDT point, then one sees
small fast oscillations remaining in the numerically exact dynam-
ics. This suggests that the near-stationary term suppresses the ef-
fect of the fast oscillating terms, unless its amplitude nearly
Fig. 1. Instantaneous coherent destruction of tunneling (ICDT) seen in a resonantly
ðx ¼ x0Þ and strongly driven ðA=x ¼ 10Þ qubit. The interaction is small,
D=x ¼ 0:075, and the pulse width (FWHM) sp ¼ 2000x�1. Panel (a) shows the
envelope function of the pulse with linear rise and fall, (b) shows the numerically
exact population dynamics of the initially (at t0 ¼ �3000x�1) unpopulated excited
level j1i, and (c) depicts the Bessel function J1 as a function of the scaled driving
amplitude AðtÞ=x. A temporarily frozen dynamics of the population around the
dashed lines in (b) coincides with a zero of the Bessel function in (c), and the arrows
in (a) point to AðtÞ=x ¼ 3:83 and 7.02, indeed the first two zeroes of J�1 (or of J1).
vanishes, in which case it becomes no more important than the ne-
glected rotating terms.

For the linearly rising half of the pulse, the time integral over
hzðtÞ is easy to do, and a term A cosðxtÞ=½xðxspÞ� is neglected
against AðtÞ sinðxtÞ=x when making the SVAA. From these formu-
lae we again see that this is all right to make the approximations in
case xsp � 1 and ðA=½xðxspÞ� � 1, which confirms the assumed
generality of these conditions that were derived in Eq. (8) above
for the two-sided exponential pulse.

It is to be expected and numerics confirms that as pulses be-
come shorter while keeping the same maximum amplitude,
instantaneous coherent destruction of tunneling may not be so
clearly visible anymore as a temporarily frozen population. How-
ever, whether visible in the population or not, as long as the
approximate description remains valid, the effective interaction
still vanishes at those instances when the Bessel function Jnres

van-
ishes, and instantaneous coherent destruction of tunneling occurs.

4. Numerical comparison of exact and approximated dynamics

4.1. Validity of RWA for approximation for two-sided exponential
pulses

We will now compare the exact dynamics of Eq. (2) with the
approximated dynamics. In Fig. 2 a comparison is made for a qubit
driven by two-sided exponential pulses, for which we did a two-
step approximation: first we made the RWA in Eq. (6), and then
also the SVAA in Eq. (9). The driving is quite strong but the approx-
imated resonant dynamics closely follows the exact curves. The
approximation is least accurate after the pulse, when the exact
dynamics of the undriven qubit shows oscillations where the
approximated population does not vary, and as expected these
oscillations are larger for larger D. As anticipated in Section 2, mak-
ing the SVAA hardly gives rise to extra inaccuracy once the RWA
has been made, as exemplified by the overlap of the corresponding
curves. Notice also in the figure that the discontinuity in the deriv-
ative of the pulse shape function at time t ¼ 0 does not lead to
inaccuracies of the approximated dynamics after t ¼ 0.

4.2. Validity of RWA and SVAA for gaussian pulses

One can also compare the exact and the approximate dynamics
for gaussian pulses and this is exemplified in Fig. 3. The exact and
approximated curves for D=x ¼ 0:05 are not quite the same any-
Fig. 2. Population dynamics P1ðtÞ for a qubit resonantly ðx ¼ x0Þ driven with a
two-sided exponential pulse with maximum scaled amplitude A=x ¼ 10 and
FWHM width sp ¼ 40x�1, for D=x ¼ 0:02 (lower curves) and D=x ¼ 0:05 (upper
curves). The red solid curve depicts the numerically exact dynamics of Eq. (2), the
purple dashed curve shows the dynamics after making the RWA of Eq. (6), and the
blue dash-dotted curve represents the dynamics after also making the SVAA of Eq.
(13). The latter two curves overlap. The dotted curve is the pulse form pðtÞ.



Fig. 3. Population dynamics P1ðtÞ for a qubit resonantly ðx ¼ x0Þ driven with a
gaussian pulse with maximum scaled amplitude A=x ¼ 4 and FWHM width
sp ¼ 40x�1, for D=x ¼ 0:02 (lower curves) and D=x ¼ 0:05 (upper curves). The red
solid curves depict the numerically exact dynamics of Eq. (2), while the blue dashed
curve shows the approximated dynamics after making both the RWA and SVAA as
in Eq. (9) and its solution Eq. (13). The dotted gaussian is the pulse form pðtÞ. (For
interpretation of the references in color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Final excited-state probability P1ð1Þ for a qubit resonantly driven (x ¼ x0Þ
by a gaussian pulse, as a function of the scaled maximal pulse amplitude A=x,
computed with the approximate solution Eq. (13). Shown are curves corresponding
to different pulse widths sp (FWHM): on the right, from bottom to top, the curves
correspond to xsp ¼ 20;50;100, and 150. The interaction D equals 0:02x in all
cases. (For interpretation of the references in color in this figure legend, the reader
is referred to the web version of this article.)
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more, which shows that the condition D=x� 1 for the RWA to
hold must be observed rather stringently. For the smaller interac-
tion D=x ¼ 0:02, the agreement between the two curves is good,
and we stick to that small value for the interaction when discuss-
ing pulse shaping below.

5. Pulse shaping for quantum state preparation with strong and
short pulses

5.1. Weak-driving limit and area law

The approximated final-state population depends on UðtÞ, the
integral given in Eq. (12). This integral over a Bessel function with
argument AðtÞ=x can be simplified if the driving is weak, A=x� 1,
because in general JnðxÞ ’ xn=ð2nn!Þ for x� 1, and also
J�nðxÞ ¼ ð�1ÞnJnðxÞ. For weak resonant driving with x ¼ x0, we
have nres ¼ �1, and the time integral then becomes an integral over
the pulse area

R t
t0

dsAðsÞ. In other words, for this specific resonance
we find that the excitation probability at some time is given by the
time integral over the pulse up to that time. Therefore, an intended
final state can be engineered by the right choice of the total area
under the driving pulse, where the precise form of the smooth
pulse does not matter. For other resonances jnresj – 1, the corre-
sponding Bessel function has a nonlinear small-argument behav-
ior, and the corresponding ‘laws’ for weak driving are not pulse
area laws.

5.2. Final states obtained by strong driving with a gaussian pulse

Often the goal of driving a quantum system is to engineer an in-
tended final state [9,38,1], the pure excited state for example. If we
consider a qubit driven by gaussian pulses and take the interaction
D small to keep the approximate treatment accurate – and let us
take D=x ¼ 0:02 – then we have two parameters left to vary the
pulse, namely the maximum amplitude A and the pulse width sp.
Fig. 4 depicts the probability to end up in the excited state as a
function of the driving amplitude A, for several pulse widths. From
the figure it is clear that for the smallest pulse width xsp ¼ 20 the
probability P1ð1Þ is small, whatever the driving amplitude. In or-
der to reach complete inversion P1ð1Þ ¼ 1, which according to
Eq. (13) corresponds to Uð1Þ ¼ p=2þmp with integer m, one
needs xsp ¼ 100 or a bit less. Fig. 4 shows that small D and sp can-
not be compensated by huge driving amplitudes to obtain
P1ð1Þ ¼ 1. For the longer pulses, the final probability becomes
oscillatory as a function of the scaled driving amplitude A=x, and
usually one would then choose the smallest value of A to obtain
the fully inverted final state. For shorter pulses, larger values of A
are needed. For large-amplitude driving the relation between A
and sp to obtain P1ð1Þ ¼ 1 is not precisely that of an area law.
One can say that for strong driving the integral (12) over the Bessel
function replaces the area law [9].

In summary, a careful choice of the area under a pulse can be
used to flip the state in the weak-driving regime for nres ¼ �1.
Choosing to satisfy the condition sin2½Uð1Þ� ¼ 1 with U given in
Eq. (12) is a more general method that allows the design of stron-
ger pulses with arbitrary resonance order nres that achieve a state
flip of the qubit in a shorter time.

6. Application: spin qubit in diamond driven by a strong
microwave pulse

As an important application, here the Hamiltonian for a strongly
driven NV center spin qubit in diamond will be briefly introduced,
and two realizations of the standard CDT Hamiltonian with NV
centers will be discussed, before discussing the theoretical results
of previous sections in the light of the very recent experiments by
Fuchs et al. [1].

The Hamiltonian H0 of the undriven S ¼ 1 ground state of the
NV center in a static magnetic field B is given by

H0 ¼ DS2
z þ gelBB � S; ð14Þ

which is the sum of a zero-field splitting and a Zeeman term. The
anisotropy term DS2

z describes a zero-field energy splitting of
D ¼ 2p	 2:88 GHz between the m ¼ 0 and the m ¼ �1 states. The
anisotropy implies a fixed quantization axis along the axis between
the nitrogen and the vacancy, which will be called the z axis. In the
Zeeman term, ge is the electron g-factor and lB the Bohr magneton.
Magnitude and direction of the static magnetic field B ¼ ðBx;By;BzÞ
are not specified yet. The NV center is driven by a strong microwave
pulse

VðtÞ ¼
ffiffiffi
2
p

AðtÞ cosðxtÞnd � S: ð15Þ

The unit vector nd describes which spin components of
S ¼ Sxx̂þ Syŷþ Szẑ the driving field couples to and how strongly.
The factor

ffiffiffi
2
p

is taken out for later convenience. Without loss of
generality, we can assume that nd ¼ ðsin h;0; cos hÞ, with h the angle
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with the z-axis. The sum of Eqs. (14) and (15) is the total Hamilto-
nian HðtÞ ¼ H0 þ VðtÞ for the driven three-level atom.

Often the NV centers are operated such that one of the three
levels can be neglected in the dynamics, and the remaining two
levels constitute a long-lived qubit. For example, one can choose
a static magnetic field B ¼ ð0;0; BzÞ that lifts the m ¼ �1 degener-
acy by an amount DE and a driving field with a frequency x that
is resonant with the m ¼ 0$ m ¼ �1 transition and an amplitude
A� DE. Then, if the system starts in the m ¼ 0 level, then typically
the population of the m ¼ 1 level is negligible at all times. This is
the situation in the recent experiments by Fuchs et al. [1]. Notice
that the energy Em¼0 ¼ E0 ¼ 0 for all field strengths Bz. After redef-
inition of the zero of energy, the effective two-level Hamiltonian is

HðtÞ ¼ erz þ AðtÞ cosðxtÞ½sin hrx þ cos hrz�; ð16Þ

with e ¼ jD� gelBBzj=2. In order to bring this Hamiltonian in the
standard form of the CDT Hamiltonian, we rotate to a new basis
where the Pauli matrices are ðsx; sy; szÞ and where the driving pulse
couples to sz. In the new basis, the effective two-level Hamiltonian
becomes

HðtÞ ¼
e cos hþ AðtÞ cosðxtÞ e sin h

e sin h �e cos h� AðtÞ cosðxtÞ

� �
: ðCase 1Þ

ð17Þ

This Hamiltonian for a driven spin qubit in diamond is of the gen-
eral form of Eq. (1), with the transition frequency x0 given by
jej cos h ¼ jD� gelBBzj cosðhÞ=2 and the interaction D ¼ e sin h. The
factor

ffiffiffi
2
p

in the driving amplitude canceled against the normaliza-
tion factor of Sð1Þx . It is important to notice that the Hamiltonian (17)
can easily be changed upon variation of external parameters. For
example, the relative quantity D=x0 ¼ tan h is fully controlled by
the angle of the driving interaction with the z-axis, and can assume
all values. The magnitudes of x0 and D are both changed upon var-
iation of the external magnetic field Bz, while the strength A of the
driving field VðtÞ is independently controlled by the input power.

Instead of driving the NV center off-axis, one could also drive it
along the z-axis ðh ¼ 0Þ, and apply a small static magnetic field Bx

in the x-direction. As before, a larger static Bz field is to be applied
to split the m ¼ �1 levels. In this case, the Hamiltonian after two-
level approximation is

HðtÞ ¼
eþ AðtÞ cosðxtÞ gelBBx

gelBBx �e� AðtÞ cosðxtÞ

� �
: ðCase 2Þ

ð18Þ

Advantage of the second case may be that D ¼ gelBBx and
x0 ¼ e ¼ ðD� gelBBzÞ=2 can be varied independently, each by their
own external parameter Bx;z. The Cases 1 and 2 are two ways to real-
ize the standard CDT Hamiltonian for driven spin qubits in NV cen-
ters in diamond.

6.1. Comparison with recent and proposals for future experiments

Strongly pulsed driving of NV center spin qubits for Case 1 was
reported very recently in Ref. [1], and for some strong and fast
pulses the qubit changed state very rapidly, with possible ultrafast
quantum state preparation applications. The experiments show
that a great level of control can be achieved of the large-amplitude
pulses that drive the long-lived NV center. The parameter regime
was not the same as discussed here, mainly because the driving
was chosen to make an angle cos h ¼

ffiffiffiffiffiffiffiffi
1=3

p
with the z-axis, which

according to Eq. (17) means a strong static interaction in the CDT
Hamiltonian with D=x0 ¼

ffiffiffi
2
p

. The approximate treatment adopted
here is valid in the rather opposite D=x� 1 limit. As a conse-
quence, the short pulses that we found in this regime to invert
the population are not quite as short as found in the experiments
of Ref. [1]. The advantage on the other hand of the D=x� 1 regime
is that it can be beneficial to design the right pulses with the help
of analytical predictions for their effects on a qubit, such as pre-
sented here.

Another difference is that the current maximal experimental
value of A=x is ’ 1:1. According to Fig. 4, this enables one to invert
qubit populations fast with pulses with xsp ¼ 150 and x ¼ 50D,
while some of the phenomena discussed above require even higher
values of A=x. Thus the driving reported in Ref. [1] is strong, but
not quite as strong as would be needed to observe coherent
destruction of tunneling.

It is therefore an interesting question whether (instantaneous)
coherent destruction of tunneling could be observed in NV center
spin qubits. As shown in Fig. 1, the smallest value of A=x for which
CDT would occur for the nres ¼ �1 resonance is 3:83. Achieving this
is challenging and would require making x0 smaller by increasing
Bz somewhat more, and by working with slightly higher pump
powers at the lower resonant frequency. In Case 1 it would also re-
quire to drive at a small but nonzero angle with respect to the z
axis, so that tan h� 1. In Case 2, again smaller resonance frequen-
cies due to larger magnetic field Bz and larger powers would be
needed, in combination with a small static Bx-field. For fixed
A=x, there is freedom to choose A and x such as to optimize the
validity of the two-level approximation. Similarly, in case of pulsed
driving with A=x somewhat increased and D=x reduced as com-
pared to the recent experiments [1], the ICDT phenomena as dis-
cussed in this article are predicted to show up in strongly driven
NV center qubits in diamond.

CDT by harmonic driving can serve as a useful method to lock
a qubit with degenerate energy levels in a desired state, even in
the presence of static couplings that otherwise would lead to tun-
neling. For the NV center, the static magnetic field Bz can be in-
creased from the 850 G of Ref. [1] to 1023 G (a slightly higher
increase than what is needed above), so that e vanishes and the
m ¼ 0;�1 levels become degenerate. In Case I, the tunnel cou-
pling also vanishes with e. Unwanted static tunneling terms
Dnoise in the Hamiltonian could nevertheless lead to tunneling,
but driving with parameters such that Deff ¼ DnoiseJ0ðA=xÞ ¼ 0
can prevent this. The smallest driving amplitude for which this
occurs is A ¼ 2:40x. A first demonstration of quantum state pres-
ervation by CDT in NVs seems simpler in Case II, where the effec-
tive tunnel coupling Deff can be tuned both by the static magnetic
field Bx and by the driving.

Importantly from a quantum information perspective, the qubit
state to be preserved can be an arbitrary superposition, the coher-
ence of which would not get lost while driving, at least on time
scales that noise in the strong driving is negligible. This stabiliza-
tion application of CDT is the opposite of fast manipulation. Of
course it is equally important to be able to keep a qubit in a certain
state as it is to be able to change its state, and both can be achieved
by appropriately chosen strong high-frequency driving.
7. Conclusions

In summary, the dynamics of qubits was studied that are reso-
nantly driven by strong pulses. Starting with a simple pulse shape
that allowed an analytical treatment, the parameter regime was
explored in which the rotating-wave and slowly-varying ampli-
tude approximations are valid in case of strong resonant driving.
In that regime, accurate solutions in closed form were presented
for the strongly driven dynamics. Coherent destruction of tunnel-
ing [11,12] was seen to be at work in the population dynamics of
strongly pulsed qubits around specific instances in time, and this
phenomenon could be called instantaneous coherent destruction
of tunneling, or ICDT.
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The closed solution of the approximate dynamics allows a sim-
ple method of pulse shaping in the large-amplitude driving regime,
to prepare final quantum states using short resonant pulses. It was
shown that the specific shape of the pulse is not important as long
as one makes sure that a certain time integral (12) has an intended
value. The strong pulses that were were found to invert the qubit
population fast can be seen as generalizations of p-pulses for
strong driving. In other words, this is another strong-driving meth-
od in the quantum state preparation toolbox, complementary to
the novel method of Ref. [1]. In specific applications, their merits
are to be compared with other methods to invert a spin, for exam-
ple robust adiabatic passage schemes based on chirped pulses
(used for calibration in [1]).

Finally it was argued that the method of quantum state preser-
vation by CDT and the pulse-shaping method discussed in this pa-
per occur in a parameter regime that might soon be explored and
used experimentally with NV center spin qubits, and there are
good prospects of observing the phenomenon of instantaneous
coherent destruction of tunneling.
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