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Abstract

We study the absorption lineshape for one-dimensional molecular aggregates with colored dynamic disorder. We show
that exchange narrowing of the absorption spectrum, which is well-known in the limit of static disorder, also occurs for fast
fluctuations, provided the fluctuation rate A is not large compared to the intermolecular excitation transfer interaction J. For
small aggregates, the narrowing factor is found to equal the number of molecules in the aggregate, while for large aggregates
it saturates at 8J/A (A/J < 4). These results are derived for dichotomic noise. but we argue that they also hold in the
fast-fluctuation limit of other Markov processes. © 1998 Elsevier Science B.V.

1. Introduction

The dynamics of excitons in molecular assem-
blies, like J-aggregates [1] and biological light-
harvesting systems [2], are strongly affected by the
host medium. For example. the chromophores in
quasi-one-dimensional J-aggregates embedded in
low-temperature glasses suffer from strong static fre-
quency disorder imposed by the structural disorder
of the glass [3]. For aggregates in room temperature
solutions, an even more complicated situation arises,
as the environment may then not be considered static
[4]. A well-known phenomenological way to model a
dynamic environment {(bath), is to assume that it
imposes a classical stochastic fluctuation on the tran-
sition frequencies of the chromophores [5-7]. This
level of modeling involves two frequency scales: the
amplitude of the fluctuations (4) and their inverse
correlation time (A). Although this model is strictly
speaking only valid for temperatures that are high

compared to the frequency of the bath modes [7,8], it
has been used very successfully to describe ultrafast
spectroscopies, involving fast bath modes, for single
molecules in solution [9). In the fast fluctuation limit
(4 <)), the single-molecule absorption line under-
goes motional narrowing: with growing A, its width
decreases according to A% /A due to the fact that for
smaller correlation times each realization of the
stochastic process averages more effectively over the
evolution of the phase of the molecular transition
dipole.

The case of an aggregate of interacting molecules,
each of which undergoes stochastic fluctuations. is
much more complicated, as it involves a third fre-
quency scale: the intermolecular transfer interaction
J. Only the white-noise limit (A > A,J) is exactly
solvable and leads to the Haken-Strobl model with a
homogeneous exciton dephasing rate I'= A"/
[10,11]. For finite correlation times, one generally
has to resort to approximate theories, like the dynam-
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ical coherent potential approximation [12] or cumu-
lant expansions [13,14].

In molecular aggregates, not only motional nar-
rowing of fluctuations occurs, but also exchange
narrowing [5,12,15]: due to the intermolecular excita-
tion transfer, the excitation probes more realizations
of the frequency fluctuations, and thus more effec-
tively averages over them. This narrowing effect,
which somewhat unfortunately is sometimes also
referred to as motional narrowing [4,16,17], is well-
known for J-aggregates with static disorder and is
generally believed to cause the characteristic sharp-
ness of the absorption band in these systems. In
small aggregates of molecules with mutually inde-
pendent static frequency disorder, narrowing occurs
with a factor of the order VN [15,16]. If the aggre-
gate length exceeds the exciton delocalization length
(N,.,) imposed by the disorder, however, this factor
is replaced by \m [3,15].

In this Letter, we focus on the opposite case:
exchange narrowing of fast fluctuations. In particu-
lar, we investigate whether the motionally narrowed
single-molecule line width of A”/A may be further
narrowed by the intermolecular transfer interactions
and, if so, how this extra narrowing depends on the
aggregate size and the three frequency scales of the
model. These questions were recently put forward by
Van Burgel, Wiersma, and Duppen in their analysis
of fs experiments on J-aggregates in solution [4].

The outline of this Letter is as follows: in Section
2, we describe the model and the method used to
calculate the absorption spectrum for small aggre-
gates. In Section 3, we present exact numerical
results which demonstrate exchange narrowing and
we derive an analytical expression for the exchange
narrowing factor. A physical discussion of our re-
sults and a comparison to previous work are given in
Section 4, while in Section 5 we conclude.

2. Model and method

We consider a one-dimensional aggregate that
consists of N two-level molecules with nearest-
neighbor excitation transfer interactions J. Modeling
the effect of the environment by a stochastic modula-
tion of the molecular transition frequencies. the

Frenkel exciton Hamiltonian for this system reads
(h=1),

N—1
A = T [(@0+ 200055,

n=0

nn-

+J(bib ,+B;;+,B,,)]. (1
Here, l§,§ and l;,, denote the Pauli creation and anni-
hilation operator [18], respectively, for an excitation
on molecule n, w, is the average molecular transi-
tion frequency, and A,(7) is the modulation of the
frequency of molecule » at time 7. We impose
periodic boundary conditions: b}, = b},.

We will assume that the A (1) are independent
dichotomic Markov processes [19,20] of amplitude A
and correlation time A" '. Thus. at time t, cach A (1)
either has the value +A4 or — A, while its correlation
function decays according to:

(A,(0)A(T)>=48,, A% e 7 (2)

mn

For large A, the fluctuation varies rapidly between
+ A4 and — A, whereas for A = 0 the model describes
static dichotomic disorder. The case of finite A is
referred to as colored dichotomic noise.

The linear absorption spectrum of an aggregate is
determined by the two-time correlation function of
its total transition dipole X, u, (b + b ), where 1,
is the transition dipole ot molecule »n. For simplicity,
we will assume that all molecules have equal transi-
tion dipoles u._ that are all oriented perpendicular to
the plane of the ring formed by the aggregate. In the
rotating wave approximation, the line shape is then
given by [20]:

N

I(0)=wlRe ¥ [
n=0"0

*x

dre™ (X, (1), (3)

Here, {...) denotes averaging over the stochastic
frequency modulations and the functions X (1) are
sums of one-exciton Green functions:
N-1 R
X,(1)= ¥ <015,0(1)b;, ). (4)
=0
U(1) is the time evolution operator obeying dO/dt
= —iH(1)U and 10) denotes the aggregate’s ground
state, where all molecules are in the ground state.
To calculate { X, ()}, one derives its equation of
motion d{ X (7)) /dr [20.21]. This equation couples
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(X,(1)) o {X, (1)) and (X (1)A,(1)). The lauer
variables couple to averages with one X and two
fluctuations, etc. A hierarchy of equations of motion
is thus derived. In contrast to, e.g.. the Gauss—
Markov stochastic process, the dichotomic fluctua-
tions allow this hierarchy to close, because A’(r) =
A* for all n and all . Thus, a closed set of N2V
linear equations of motion may be derived. a fact
recognized and used by Reineker, Barvik, and co-
workers to numerically study effects of colored noise
{20).

The size of this closed set of equations imposes
strong restrictions on the aggregate size that can be
treated. Thus far, only results for N up to 6 have
been reported [20]. However, by exploiting the peri-
odic boundary conditions and the fact that all
molecules are on average identical, the size of the
set can be reduced by a factor of N. For example,
(X,(0)={(X,(1)) and in Eq. 3) TI_J{Xx,(1)
may simply be replaced by N{ X (7). Using similar
symmetries of the higher-order variables in the hier-
archy, the following set of 2" variables gives a
closed hierarchy:

XO(r) = (X(1)), (5)
XU ny .. ,n,,t)
= <X“([)A”‘(1)A”2(f) T An”,(t)>/Am~ (6)

where 1<m<N and O0<n <n,<...<n,<
N-—1

Using the time evolution of U and the properties
of correlation functions of dichotomic processes [21],
the general equation of motion that governs this
hierarchy reads:

E)("’”)(nl,n2 ..... n,:r)

= —(iw, +mANY X" (n,.n,,....n,:t
§) 1 2 m

— XY, —1n,— L. n, — 1:t)

— X" (n, + Ln, + 1,00, + 1:1)

—iA(1 =8, ) X" (0.0, .,
—i48, (X" V(n,. .., n,t). (7)

The set of variables X defined above form a
vector X of dimension 2. As first element of this
vector, we use X', The equation of motion for X
now reads

d
'&;X(!)=—iRX(I). (8)

where the matrix R follows from Eq. (7). The initial
condition is [X(r=0)], =Xt =0)=1 and all
other components of X vanish at r= 0. By Laplace
transforming this equation and using Eq. (3), one
arrives at

t

I(0) = —Nu? Im{wl ~R}; | (9)

with the last factor denoting the (1,1) element of the
inverse of the matrix wl — R. We stress that this
result is exact. Of course, for any reasonable value of
N, the actual evaluation has to be numerical.

3. Results

Before considering the absorption spectrum for
aggregates, we briefly discuss the case N =1, ie.,
an ensemble of monomers. This can be solved ex-
actly [19]. For A> A, we are in the static limit.
where each molecule has a random static frequency
which either is w, + A or w,— A. This gives an
absorption spectrum with two narrow spikes. For
decreasing A/ A, both lines broaden, until they merge
into one peak for A/A = 1. Upon further decreasing
A/ X this peak narrows according to A% /A (HWHM).
which is the motional narrowing effect described in
the Introduction. Motional narrowing is a single-
molecule property and occurs for any Markov pro-
cess (not only the dichotomic one) that has a second
moment [22].

For N> 1, we numerically calculated the absorp-
tion spectra using the method outlined in the previ-
ous section. We considered aggregates of up to
N =9 molecules and used various values of A/J
and A/J. In the static limit (A >> A), the spectra
contain a collection of narrow peaks in the frequency
interval [w, +2J — A .w, + 2J + A], resulting from
all possible eigenstates on random aggregates with
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two types of molecules (frequency w,+ A). For
growing N the peaks become denser; for growing
A/J, more peaks become prominent. Keeping A4/J
fixed and increasing A/J, leads to the merging of all
discrete peaks into one broader feature, which then
motionally narrows for A > A. These features are
basically the same as observed for N < 6 [20]. In this
Letter, we tocus completely on the N dependence of
the single peak that shows up in the motional nar-
rowing regime.

Figs. 1{a)—(c) give the motionally narrowed ab-
sorption spectra for N = 3, 6, and 9, with A increas-
ing from 0.25J to 16J (from the higher to the lower
peaks), while keeping A*/A=0.5J fixed. The area
under each of the peaks is independent of A, A, and
J and is given by wNu’. From these figures it is
observed that if A is large, all peaks get, independent
of the aggregate size, the same width of 0.5/, which
agrees with the single-molecule motional narrowing
width of A?/A. For decreasing A/J, however, it is

30

I(w)

20 ¢

120 +

()

80 |

40

(0w

also seen that the peak width can get considerably
smaller than this monomer value and that this extra
narrowing is more prominent if N is increased. The
latter is very clear from Fig. 1(d), which gives the
spectra per molecule for the three considered ring
sizes at A= A = 0.5J. These observations imply that
indeed exchange narrowing of fast fluctuations oc-
curs.

Further quantitative insight into the line shape and
the exchange narrowing can be obtained by analyti-
cal analysis. To this end, we truncate the hierarchy
of 2% equations of motion, by neglecting the vari-
ables X relative to the X‘". This is equiva-
lent to the random phase approximation (RPA)
type factorization, (X (A )A4,(1) =
(X, (1) A LDA, (1)), which was proposed in Refs.
[20.23] and shown to be a good approximation for
dimers and trimers (N = 2,3), as long as A < y2 A,
i.e., in the motional narrowing regime.

After this truncation, the matrix R can be reduced

I(w)

10 N A=A=05]]
€ | w R ]
2 >.

5t AN
Do 1
/i 1
/.() A 1
0 - >
1 2 3
(w—w)/]

Fig. 1. (a)-(c) Absorption spectra for ring aggregates of N = 3.6, and 9 molecules. For each N, A/J takes the values 0.25, 0.5, 1, 2, 4, 8,
and 16, when going from the highest to the lowest peak. The ratio A%/A = 0.5/ is kept constant for all spectra. Panel (d) compares the
spectra for the three ring sizes at A= A =0.5J (solid line: N = 3, short dash: N =6, and long dash: ¥ =9). /(w) is given in units of
/.
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to a matrix R’ of dimension N + | in the subspace
of X and XV(n)(n=0,....N—1)
w,+2J A)

A" BJ
Here, A is the N-dimensional vector (—A,0,...,0),
while B is the N X N matrix that has w, — i A as its
diagonal elements, J on its two subdiagonals, and J
as its upper right hand and lower left hand elements.
The matrix B is equivalent to the Hamiltonian for a
homogeneous ring of N molecules with nearest-
neighbor interaction J and effective transition fre-
quency ®, —iA. As the latter problem is easily
diagonalized, it is straightforward to solve for the
(1.1) element of (w— R)"'. leading to the line

[—

(10)

shape:
1
(@)= —Nu’lm - . (11
(@) # w—w,—2J—-3(w) (1
with
A NZ) A
¥ - —
2(w) NA > Sk
k=0 —w,—2Jcos| —— | +iA
N
(12)

the complex and frequency dependent exciton self-
energy.

For N <9, I(w) given by Eq. (11) indeed turns
out to be in excellent agreement with our exact
numerical spectra as long as A > A. This confirms
that in the motional narrowing regime the RPA is
valid. Of course, Eq. (11) is much easier to evaluate
(for arbitrarily large N) and we therefore used it to
further study the width W (HWHM) of the absorp-
tion peak in the motional narrowing regime. We
may, in fact, go one step further and make a pole
approximation in Eq. (11) by replacing 3(w) by
X(w, +2J). We have checked that this approxima-
tion is good for arbitrary N, as long as A <A/2.
The thus obtained line shape is Lorentzian, is cen-
tered at w,+ 2J + Re 3(w,+2J), and has width
(HWHM) W= —Im X(w,+2J). From Eq. (12),
one finds that

w LA 13
TEX ()

with

5 =1

N-1 A2

=Nl X

im0 4731 —cos(2mk/N)}’ + A2

(14)

F, is the exchange narrowing factor by which the
single-molecule line width in the motional narrowing
regime is further reduced due to the intermolecular
interactions. Note that F, does not depend on A. A
plot of F, as a function of N and A/J is given in
Fig. 2.

Straightforward analysis of Eq. (14) shows that
| <F. <N.For A/J> |, F,= 1. which agrees with
the Haken-Strobl result (see Introduction) [10,11].
For A/J<1 and (N/27) < (J/X)?, Eq. (14)
gives F, = N. Above a certain aggregate size, how-
ever, this N-scaling saturates and the absorption
spectrum per molecule no longer depends on N.
These features are clearly seen in Fig. 2 and indeed
capture very well the salient details of the exact
spectra in Fig. 1(d), where it may be observed that
the narrowing for N =3 occurs with a factor of
approximately 3, while the spectrum for N =9 al-
ready closely resembles the one for N=6. The
saturated value of the narrowing factor is easily
calculated from Eq. (13) by taking N — = and re-
placing the sum over k by an integral over « =
2mk/N. This leads to the exchange narrowing factor
for the infinitely long aggregate:

A 2N +32J°
1'4:' = 3 2 R (15)
A +AVA +16J°

It follows that for A /J > 4. F” tends to unity, while

Fig. 2. The exchange narrowing factor Eq. (14) as a function of
A/J and N.
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for A/J <4, F =+/8J/A. F/ may also be viewed
as the aggregate size at which the saturation of the
spectral lineshape sets in.

To end this section, we note that within the above
truncation approximation our results are not limited
to the dichotomic process. Any other stochastic pro-
cess with two-time correlator Eq. (2), in particular a
Gauss—Markov one, would yield identical RPA re-
sults.

4. Discussion

We now turn to the physical explanation of our
observations. First consider the case of vanishing
disorder ( A = 0). We then simply have exciton states
that are coherently delocalized over the entire ring.
Only one of these states is observable in absorption:
the k= 0 Bloch state, X, 510>/ VN, with frequency
w, + 2J. Next, consider finite fluctuations that are
slow on the time scale of excitation transfer (A/J <
1), while N is not too large. Then, we may still
consider exciton states. which adiabatically follow
the molecular fluctuations. As we are most interested
in the motional narrowing regime (A < A). we may
also assume that 4/J is small enough so that the
adiabatic exciton states are still completely delocal-
ized over the ring. We may then use perturbation
theory to calculate the effect of the molecular fluctu-
ations on the exciton states. To first order in A4, the
frequency fluctuation of the k=0 state around the
value w, + 2J reads:

A_o(1)= ZA,,(f)/N~ (16)

which simply is the average of the molecular fluctua-
tions. Using Eq. (2), 4,_,(1) is found to have a
correlator

<Al\—=()(r)‘-‘k=()(7>>:/.i' e YT (17)

with A, = A/ VN . Thus, the amplitude of the fluc-
tuation is reduced by a factor VN compared to the
single molecule, while its time scale is not affected
(Ay= M),

Exactly the same results would be obtained for
the more frequently considered Gauss—Markov fluc-
tuations. In the static limit. this gives the familiar
explanation of exchange narrowing by the factor VN

[15,16]. The difference between both types of fluctu-
ations is that for Gaussian molecular fluctuations,
A,_ (1) according to Eqg. (16) is still a Gaussian
process, while in the case of dichotomic noise
A, _ (1) is not dichotomic. In the motional narrowing
regime. however, only the second moment of the
process A, _,(t) is important; other details of its
character only show up in the far wings of the line
shape. In fact, the width of the absorption line
associated with the fluctuating &k = 0 exciton level is
then given by A} /A = A’/(NA), which is smaller
than the monomer line width by a factor of N. This
agrees with what we found in the previous section
for (A/J) < Qm/N)*.

If A/J or N increase, the adiabatic approximation
breaks down and we should strictly speaking resort
to a density matrix approach. In stead of following
that route. however, we will estimate the line width
by introducing effective adiabatic exciton states on
finite intervals of the aggregate. Let us define a
domain of N, molecules on the ring such that the
time scale N,// of excitation transfer over this
domain equals the time scale (N,A)"" during which
one fluctuation occurs on one of the N, molecules.
Thus, N, gives the typical domain size for which the
adiabatic approximation starts to break down. Equat-
ing the two time scales, we arrive at N, = \/7/)\. If
N, > N. we return to the above situation: narrowing
of fast fluctuations occurs with a factor N. If 1 <N,
<N, the narrowing factor is F,==N,, i.e., the ring
size no longer limits the line shape. In particular, for
an infinitely long aggregate and J > A, we arrive at
F, ~/J/A, which agrees with the limiting behavior
that we found in Section 3. Fimnally, if N <[ (ie..
J < A), the identification of N, with a chain interval
can no longer be made. In this case. no intermolecu-
lar excitation transfer occurs before a tluctuation
takes place. so that exchange narrowing is Impossi-
ble (F, = 1). This is the white-noise limit. in which
the excitation already efficiently averages over all
possible phase evolutions before transfer (o another
molecule can help to decorrelate the frequency. In
the current line of reasoning, we tacitly assumed that
the amplitude A of the fluctuations does not limit the
delocalization of the adiabatic excitons to a size
smaller than N,. In the fast fluctuation limit (A > A).
which we are focussing on. this is indeed the case, as
the delocalization length scales like (J/A)*/* [3.24].
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To conclude this section, we make a brief com-
parison to previous studies of the line width of
dynamically disordered molecular systems. In partic-
ular, we consider the works of Sumi [12] and Blu-
men and Silbey [13]. Using the dynamical coherent
potential approximation [12] and cumulant expan-
sions [13,14], these authors considered Gauss—
Markov fluctuations in three-dimensional crystals of
infinite size. They did not study size scaling. If the
oscillator strength is concentrated at one of the band
edges (as is the case for our model), both studies
vield a line width W= aA? /(B> + A7)/ for A <
(B> + A2 and A+#0. Here 2B is the exciton
band width (4J for our system) and « is a constant
that slowly depends on B/A tfor 0 <B/A<100.
This behavior is in marked contrast to the line width
W= A%/(8JA)'/? which we find for infinite chains
in the case 4.J > A > A. This difference is due to the
dimensionality: if we apply the cumulant expansion
of Ref[13] to a ring aggregate with Gaussian noise,
we recover our RPA result within the pole approxi-
mation, i.e., Egs. (13) and (14). This, again. demon-
strates that in the fast-fluctuation regime only the
second moment of the fluctuation process affects the
line shape.

5. Concluding remarks

In this Letter, we have studied the absorption line
shape of ring aggregates of which the molecules
undergo independent dichotomic frequency fluctua-
tions. We have found that for fast fluctuations (A >
A) the absorption line width exhibits both motional
narrowing and exchange narrowing. Motional nar-
rowing is a single-molecule property. whereas ex-
change narrowing is a collective effect. We have
shown that the dependence of the exchange narrow-
ing factor on the various system parameters (A/J.
A/J, and N) can physically be understood by intro-
ducing the notion of adiabatic exciton states on finite
intervals of the aggregate. This explanation shows
that the amplitude of the fluctuations on the exciton
level is reduced due to the excitation transfer, while
the time scale is not affected.

It may seem rather restrictive that for exchange
narrowing of fast fluctuations to occur, the fluctua-
tions should not be fast compared to the excitation

transfer. We note, however, that even for A =J
appreciable exchange narrowing occurs (F," = 2.6).
This ratio of parameters is not unrealistic: typical
values for J in J-aggregates are 10°cm™' [34],
while fast fluctuation rates for monomers in solution
may be of the same order [9].

The limiting value F* given by Eq. (15) gives the
chain size at which the absorption spectrum starts to
saturate. It is tempting to identify F," with an exci-
ton coherence length, but this is incorrect. For exam-
ple, in the white-noise limit. when our model reduces
1o the Haken-Strobl model, we find F.” = I, while it
is well-known that coherent transport of the excita-
tion over many molecules is still possible in this
limit, provided that I'= A* /A < J [11].

We finally note that the effect of exchange nar-
rowing of fast fluctuations is not limited to our
special model. As indicated in Sections 3 and 4
already, for other Markov processes (such as Gauss-
ian fluctuations) exchange narrowing for A < A oc-
curs with exactly the same factor as for dichotomic
noise. Second. the effect does not rely on the peri-
odic boundary conditions. For open boundary condi-
tions more complicated expressions are obtained.,
which for N — = reduce to the ones we found for
the ring [25]. Finally, also the restriction to transition
dipoles pointing perpendicular to the plane of the
ring is not crucial. The analysis for dipoles that lie in
the plane, which is of interest to exciton dynamics in
light-harvesting systems, will be published elsewhere
[25].
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