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2D Meshes in homogenous nanostructured graphene

We use the open source code Gmsh1 to generate the triangular meshes employed in our

classical calculations. In Figure S1 we show a simple example of such a mesh, extending

a triangular graphene nanostructure. In the practical computations, we obtain satisfactory

convergence and very good resolutions with about K = 3000 vertices (about J = 6000

elements). Due to the electrostatic scaling law,2,3 a fixed mesh configuration can be used in

the calculations of differently sized triangles. Regarding symmetry, we construct the bow-tie

triangles by simply copying the mesh from one triangle to the mirrored triangle, allowing a

potential speed up of convergence.

Figure 1: 2D meshes in a homogenous graphene triangle.

fn in different nanostructures

The parameter fn = iσ(ωn)/(4πεsLωn), introduced below Eq. (2), which gives a dimension-

less number for the eigenresonances – independent of chosen conductivity profile – is solely

dependent on the choice of geometry and characteristic feature length L. In Table 1 we

list calculated −fn in different relevant geometries, indicating also the choice of L for each

geometry.
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Table 1: Tabulated dimensionless modal-eigenvalues, -fn, listed in order of increasing energy,
for different geometries as indicated. Doubly-degenerate eigenvalues are indicated explicitly
by ∗. The choice of characteristic length L is indicated in red.

n

1 0.0879∗ 0.0947∗ 0.1145∗ 0.1369∗ 0.1462∗

2 0.0420 0.0689 0.0699∗ 0.0787∗ 0.0808∗

3 0.0304∗ 0.0374 0.0397∗ 0.0637 0.0566∗

4 0.0224∗ 0.0356 0.0386 0.0444 0.0464
5 0.0189 0.0349∗ 0.0356∗ 0.0437 0.0437∗

6 0.0180 0.0233 0.0287 0.0400∗ 0.0358∗

7 0.0154∗ 0.0230∗ 0.0248∗ 0.0359∗ 0.0326∗

8 0.0139 0.0229 0.0231∗ 0.0311 0.0303∗

The values of fn in disks were studied in Ref. 6 using a highly accurate semi-analytical

approach. For comparison, and to assess the accuracy of our numerical approach, we compare

the value for the dipolar mode and find less than 1% relative deviation. Since the disk-results

converge slower compared with the other geometries considered here (cf. the challenge of

approximating a curved boundary with a triangular mesh), we expect the values in Table 1

to have less than roughly 1% relative deviation from exact values throughout.

Taking only the Drude term for the graphene surface conductivity [see Eq. (13) in main

text], we have

−fn = e2

4πεsL

ϵf

π~ωn(~ωn + i~τ−1)
, (S1)

illustrating that the plasmonic frequency scales as ωn ∝∼
√
ϵf(εsL)−1, indicating its tunability

with Fermi energy ϵf, feature length L, and substrate properties via εs. Finally, the reso-

nance line width is proportional to the relaxation loss ~τ−1 (associated with a finite carrier

mobility).
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Figure 2: The atomic construction of armchair and zigzag triangles.

Construction of armchair and zigzag triangles

To construct the triangles with different edge terminations, we fix one of the vertices as the

origin, arrange the carbon atoms in the bottom edge with different configurations, and fill

the upper layers one by one with a decreasing width. Finally, we delete the single-bonded

carbon atoms. Thus for a typical side length, the constructed triangles may not satisfy the

rotation symmetry, but this can be realized by reducing or adding a few carbon atoms. We

show in Figure S2 the nanotriangles with two different edge terminations.

Electronic edge states

Figure 3: The local density of states at armchair (a) and zigzag triangles (b). Inset shows
the density of states, where t denotes the hopping parameter.
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The direct diagonalization of the tight-binding Hamiltonian matrix yields the single-

particle energy states ϵj and the corresponding wave functions ψj(r). The local density of

states are computed through

n(r) =
∑

j

fjψ
∗
j (r)ψj(r) (S2)

with fj the fermi distribution, and the energy density of states are

D(ϵ) = −2γ
∆

Im

∑
j

1
ϵ− ϵj + iγ

 , (S3)

where the factor 2 accounts for the spin degeneracy, γ is a very small damping factor (chosen

as ~γ = 0.006eV in the computation), and ∆ is the surface area. The numerical results are

shown in Figure S3, where we can see that the electrons are almost uniformly distributed on

the structure with armchair edges, whereas non-uniform distributions are found for zigzag

edges, with very large densities occurring at these edges. The consequence arises from an

enormous amount of zero-energy states shown in the inset, which is essentially lacking in the

structures with armchair edges.4 These electronic edge states extremely affect the plasmon

modes in both the resonance energy and damping.5,6

Calculations on graphene hexagons

The methods introduced in this article are very general for the calculations of different

geometries. As an additional example, we will discuss the plasmon modes in graphene

hexagons which are recently produced in experiments.7,8 Using the parameters given in the

main text, we show in Figure S4 the calculated eigenvalue loss spectrum, and similarly label

relevant of the plasmon peaks with numerals. The corresponding 12 plasmon modes from

classical calculations are plotted in Figure S5, where the first eight modes (1)-(8) are mirror

symmetric and the last 4 modes (9)-(12) satisfy the same discrete rotational symmetry as the

hexagonal structures. Due to the high symmetry properties of hexagonal structures, only the
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Figure 4: The eigenvalue loss spectrum −Im(ε−1
n ) in 10 nm sided armchair (a), zigzag (b),

and homogenous (c) graphene hexagons.

Figure 5: The 12 plasmon modes in a homogenous hexagon.

dipole modes (1)-(2) are optically active, and the other modes can only be detected by some

near-field techniques, while in graphene triangles some of the multipole modes still have a

net dipole moment. Modes (9) and (10) both exhibit discrete rotational symmetry. For a

mirror that cuts through the middle of two opposite vertices, mode (9) has anti-symmetric
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mirror symmetry and mode (10) is mirror symmetric.

Figure 6: The selected 8 plasmon modes in hexagons with armchair (a) and zigzag (b) edges.

We also extract the mode patterns from the quantum calculations as shown in Figure S6.

Similar to triangles, the plasmon modes exhibit blueshift in hexagons with armchair edges,

but redshift in those with zigzag edges. The dipole modes are very similar in three cases,

although due to the practical construction the two dipolar modes for two polarizations in

zigzag hexagons have different energy. This may be due to the the relatively smaller perimeter

to area ratio, being 3 times larger in triangles than that in hexagons. The differences in some

higher order modes, for example the modes (7) and (8) in armchair hexagons and the modes

(6) and (7) in zigzag hexagons, can be clearly observed.

We show in Figure S7 the eigenvalue loss spectrum in bow-tie graphene hexagons. The

energy splitting is large in both homogenous and armchair hexagons bow-ties, also evident

in a pronounced energy splitting for the y-polarized dipole modes, because of the relatively

stronger coupling here which is almost absent in triangles. In zigzag hexagons, the cou-
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pling is much weaker, and even the x−polarized dipole does not exhibit two significantly

hybridized peaks. In Figure S7b, mode (1) (corresponding to the bonding dipole mode along

x−direction) has an apparent peak, while the mode (2) (antibonding) is very close to modes

(3) and (4) at current numerical precision. Except for the coupling strength, the hybridiza-

tion procedure in bow-tie hexagons is then similar to those in bow-tie triangles. Figure 5

of the main text can thus be generalized to describe the plasmon hybridization in bow-tie

graphene hexagons.

Figure 7: The eigenvalue loss spectrum −Im(ε−1
n ) in bow-tie armchair (a), zigzag (b), and

homogenous (c) graphene hexagons.

Finally, the 12 lowest-energy plasmon modes in bow-tie homogenous graphene hexagons

are shown in Figure S8. In both armchair and zigzag bow-tie graphene hexagons, the mode

patterns can be easily constructed from Figure S6, and thus will not be presented here.
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Figure 8: The 12 lowest energy plasmon modes in bow-tie homogenous graphene hexagons.
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