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We present a general model to account for the multimode nature of the quantum electromagnetic field in
projective photon-counting measurements. We focus on photon-subtraction experiments, where non-Gaussian
states are produced conditionally. These are useful states for continuous-variable quantum-information pro-
cessing. We present a general method called mode reduction that reduces the multimode model to an effective
two-mode problem. We apply this method to a multimode model describing broadband parametric down-
conversion, thereby improving the analysis of existing experimental results. The main improvement is that
spatial and frequency filters before the photon detector are taken into account explicitly. We find excellent
agreement with previously published experimental results, using fewer free parameters than before, and discuss
the implications of our analysis for the optimized production of states with negative Wigner functions.
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I. INTRODUCTION

The ability to prepare and measure specific quantum
states of the light is the keystone of many quantum-
information processing �QIP� protocols. These states can be
described either with discrete variables in terms of photons
or with continuous variables in terms of waves. In the latter
case, the physical quantities of interest are the amplitude and
the phase of the light wave or their Cartesian counterparts
called quadratures x̂ and p̂. A very convenient representation
of the quantum state is then provided by the Wigner function
W�x , p�, which corresponds to a quasiprobability distribution
of the quadratures, “quasi” because W may assume negative
values.

An important task for QIP is the ability to undo effects of
decoherence by “distillation:” to obtain a single quantum
state that is more pure from two or more copies that have
undergone decoherence. Since states of light with Gaussian
Wigner functions cannot be distilled with Gaussian opera-
tions �1,2�, one is left with two strategies: either to distill
Gaussian states with non-Gaussian operations or to distill
non-Gaussian states with Gaussian operations �3�. This paper
is a contribution to the latter strategy and focuses on the
preparation of the non-Gaussian states rather than on their
distillation.

The negativity of the Wigner function is a standard figure
of merit, quantifying at the same time how non-Gaussian and
how nonclassical a quantum state is �4,5�. One way of ob-
taining non-Gaussian states is by conditional photon-
counting measurements, as first proposed by Dakna et al. �6�.
It was soon realized that such conditional measurements can
improve quantum teleportation of continuous variables �7�.
In recent years, several experiments �8–15� combining
continuous- and discrete-variable tools allowed for preparing
and observing quantum states of free-propagating light with
negative Wigner functions �16�.

Many of these experiments are based on the use of a
squeezed vacuum produced by parametric fluorescence,
which involves many optical modes �17�. This multimode
nature is exhibited in both cw operation, using optical para-
metric oscillators �OPOs� below threshold �18,19�, and in
pulsed experiments with a single-pass high amplification. In
order to make accurate predictions, it is therefore crucial to
develop multimode theoretical models. This was done in
�18–21� for setups using an OPO and in �22,23� for pulsed
one-photon Fock state tomography in a case of very low
squeezing when Fock state expansions are limited to one
photon only. However, these models do not fully account for
all phenomena linked to the nonconstant space and time pro-
files of the modes under study, for example, the spatial pulse
profile in the transverse direction, and they especially do not
account for gain-induced distortions in the parametric ampli-
fication process �24�. As we will see later on, these phenom-
ena are a main signature of the multimode nature and are
critical in the case of single-pass pulsed experiments.

In this paper we propose an alternative general framework
to describe the generation of squeezed light, with a twofold
goal: first, to introduce a method that reduces a very general
class of multimode models to an effective two-mode
description—this class gathers all the models governed by a
Bogoliubov transform and goes beyond the case of optical
parametric amplification—and second, to show that a spe-
cific spatiotemporal multimode model for photon-subtraction
experiments �notably including a spatial degree of freedom�
and our mode-reduction analysis thereof give an improved
understanding of state-of-the-art photon-subtraction experi-
ments.

In Sec. II we show how to reduce a multimode model to
an effective two-mode model. This mode-reduction proce-
dure is then applied in Sec. III to give an improved analysis
of the photon-subtraction experiments in Ref. �10�. We dis-
cuss the method and its application and conclude in Sec. IV.
Some technicalities are deferred to Appendixes A and C.*rosa.tualle-brouri@institutoptique.fr
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II. REDUCTION IN MULTIMODE MODEL

A. General multimode model

As a starting point we have a complete set of spatial,
temporal, or spatiotemporal optical modes in terms of which
the light propagation can be described. The modes have field
operators âj and âj

† with bosonic commutation relations
�âj , âk

†�=� jk. The âj may also stand for continuous operators
like â�t�, where t is time, with commutation relation
�â�t� , â†�t���=��t− t��, in which case sums over modes are to
be replaced with integrals. To simplify the notation even fur-
ther, we introduce â� , the column vector of all the âj. Simi-
larly â�† is the row vector that has operators âj

† as compo-
nents. We shall also need the row vector â�T and the column
vector â��= â�†T. Similar notation will be used for other vec-
tors.

In this section we consider a general unitary transforma-
tion U in which output quadratures linearly depend on input
quadratures, thus preserving the Gaussian nature of the quan-
tum fields. In fact, the only non-Gaussian operation will be
the projective measurement, corresponding to a detection
event in a subset of the output modes by an avalanche pho-
todiode �APD� �see Fig. 1�. We will assume the evolution
operator U in Fig. 1 to be a Bogoliubov transformation,
where the output field operators depend linearly on the input
ones,

â�out = U†â�U = uâ� + vâ��, �1�

where u and v are two matrices that satisfy

uu† − vv† = u†u − v†v = 1, �2a�

uvT − vuT = 0, �2b�

whereby the commutation relations of the field operators are
preserved. The output state of the light can be characterized
by doing homodyne measurements on a normalized mode
described by �� h, which has the mode operator

âh = �� h
†â� . �3�

This mode can be defined as the mode that perfectly matches
the local oscillator of the homodyne detector. After Bogoliu-
bov transform �1� it is described by

âh,out = U†âhU = �� h
†�uâ� + vâ��� . �4�

Without conditioning upon photon detection and since the
Gaussian nature of the initial vacuum state is preserved by
the Bogoliubov transform, the homodyne measurements will
show Gaussian Wigner functions corresponding to squeezed
vacuum states of light.

The point is now how to describe the output state condi-
tional upon detection of a photon by the APD, which is a
projective measurement. Analogous to the homodyne detec-
tion, we assume the photon detection mode j to be described
by a normalized state �d�j�, with corresponding field opera-
tor

âd�j� = �� d
†�j�â� . �5�

After the time evolution described by Eq. �1�, the output at
the photon detector becomes

âd,out�j� = U†âd�j�U = �� d
†�j��uâ� + vâ��� . �6�

If we only know that a photon has been detected but not in
that detection mode, then we should average the conditional
output state over all these detection modes, as is shown in
more detail below.

At this point we have a multimode output state that, in
principle, we can update given the detection of a photon in
the detector j. In practice it is convenient to first simplify
multimode expressions �4� and �6�.

B. Mode reduction

The first and central step in the mode-reduction procedure
is to rewrite the homodyne mode �Eq. �4�� in the form

âh,out = �â0 + �â0
† + �â1

† �7�

in terms of new mode operators a0,1
�†� with standard commu-

tation relations. The coefficients �, �, and � in Eq. �7� are
found as follow. Besides having standard commutations, â0
and â1 in Eq. �7� should annihilate the vacuum state, so that
â0 must contain all annihilation operators in Eq. �4�,

�â0 = �� h
†uâ� , �8�

with � fixed up to a phase factor by �â0 , â0
†�=1. We choose �

to be real valued and positive so that

� = ��� h
†uu†�� h. �9�

Furthermore, from �â0 , â1
†�=0 it follows that

� = �â0, âh,out� =
1

�
�� h

†uvT�� h
�. �10�

A complex value for � can be removed with a redefinition of
the phase of the homodyne mode, which just means that we
can assume that the state is squeezed in the x or p direction.
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FIG. 1. Projective photon-counting measurement: in our model
we assume that we start with a multimode vacuum input state that is
subject to a general multimode Bogoliubov transform U. After the
transformation a few modes are filtered out and result in a detection
event in the APD. Such a detection event in the APD prepares a
state in the single mode that is mode analyzed by homodyne
detection.
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Finally, � can be found from the fact that âh,out and âh,out
†

have commutator one, as have â1 and â1
†,

� = ��2 − �2 − 1. �11�

Here we have again used the freedom to choose � to be real
valued and non-negative. This completes the mathematics of
the mode reduction in the multimode homodyning signal.

The physical argument that two and only two modes
should remain goes as follows. The squeezed vacuum after
the Bogoliubov transform can only be a centered Gaussian
state, hence it is fully described by only the variances Vx and
Vp. The squeezed vacuum output can therefore be modeled
�25,26� by a perfect single-mode degenerate optical paramet-
ric amplifier �DOPA� with squeezing parameter r, followed
by a perfect nondegenerate optical parametric amplifier
�NDOPA� with squeezing parameter gr, as presented in Fig.
2. This is a two-mode model, with a Hilbert space H2. The
values of the parameters r and g can be deduced from the
two independent coefficients in Eqs. �9�–�11� using

� = cosh�r�cosh�gr� , �12a�

� = sinh�r�cosh�gr� , �12b�

� = sinh�gr� . �12c�

A related squeezing parameter that we will also use in the
following is s�exp�−2r�.

C. Conditioning upon photon detection

We now condition upon the measurement of a click in the
photon detector �APD�. We assume to be in the limit that the
average number of photons per pulse entering the photon
detector is much less than 1. Then a single click in the de-
tector corresponds to the detection of a single photon.

One can make a reduced-mode description of the photon
detection operator âd,out�j� of Eq. �5�, analogous to Eq. �7�.
The operator âd,out�j� can be expanded into a part acting on
H2 plus a component âd��j� acting on the complementary
space H� orthogonal to H2,

âd,out�j� = � jâ0
† + � jâ1

† + 	 jâ0 + 
 jâ1 + âd��j� . �13�

Note that âd��j� on the right-hand side contains all the terms
acting on H�, including creation operators. The coefficients
in Eq. �13� can again be found by taking commutators, for
example,

� j = �â0, âd,out�j�� =
1

�
�� h

†uvT�� d
��j� , �14a�

� j = �â1, âd,out�j�� =
1

��
��� d

†�j�vv†�� h − ��� j� . �14b�

In general, a click recorded in the APD corresponds to the
measurement of at least one photon. In the limit of low de-
tection probability, the action of the detection is the subtrac-
tion of a single photon. Note that this assumption is practi-
cally always obeyed if the parameter j is in a continuum �like
in the case of spectral filtering� since the probability to have
two photons exactly in the same mode is then negligible.
Henceforth we assume to be in this limit. In the Heisenberg
picture, a photon detection then corresponds to the applica-
tion of the operator âd,out�j� to the initial state �i.e., to the
vacuum state�, followed by the normalization of the result,

���j�� = Pj
−1/2âd,out�j��0� , �15�

where Pj is the detection probability for the mode j,

Pj = 	0�âd,out
† �j�âd,out�j��0�

= 	0�âd�
† �j�âd��j��0� + �� j�2 + �� j�2

= �� d
†�j�vv†�� d�j� . �16�

Below we will use that the vacuum expectation value of
n̂d��j�= âd�

† �j�âd��j� can be expressed as Pj − �� j�2− �� j�2.
Before continuing, it can be instructive to recall the con-

cision allowed by the Heisenberg picture. In a single-mode
problem, a photon-subtracted squeezed state is equivalent to
a squeezed single-photon state: this case corresponds to the
simple Bogoliubov transform âout=cosh�r�âin+sinh�r�âin

† ,
which directly gives a pure one-photon state �after normal-
ization� when applied to the vacuum. As the states do not
evolve in the Heisenberg picture, they all can be considered
as “input” states; but when measured using output quadra-
tures, this one-photon state will appear to be squeezed.

We are going to use the same approach in the multimode
case. One can first note that the conditioned state ���j�� in
Eq. �15� is already a one-photon state. This state, however,
does not belong to H2 only, so that measurements of output
are not so obvious to compute. In fact, we are solely inter-
ested in expectation values 	g�ah,out ,ah,out

† �� of operators de-
scribing the output that is measured in the homodyne detec-
tor. Such expectation values can be written as

	g�ah,out,ah,out
† �� = 	� j�g�âh,out, âh,out

† ��� j� �17a�

=Tr
g�âh,out, âh,out
† ��� j�	� j�� . �17b�

In Eq. �17b�, the trace can be separated into a trace over H2
and a trace over H�, and the latter does not act on the func-
tion g�âh,out , âh,out

† �, whose expectation value is then

=Tr2
g�âh,out, âh,out
† �Tr��� j�	� j�� �18a�

=Tr2
g�âh,out, âh,out
† �� j� . �18b�

All quantities of interest can therefore be deduced from the
input state reduced density matrix � j, acting in H2, and the

DOPA ( r ) NDOPA ( gr )

a0

a1

ah,out

a1,out

Homodyne
Detection

FIG. 2. Equivalent model for the Bogoliubov transform U: a
perfect single-mode DOPA with squeezing parameter r is followed
by a perfect NDOPA with squeezing parameter gr.
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crucial advantage of mode reduction is to allow a simple
expression for this matrix: writing �0�= �00� � �0��, where
�00� and �0�� are the ground states of H2 and H�, respec-
tively, and using Eqs. �13� and �15�, we directly obtain

� j = Tr��� j�	� j� = �1 − 
 j��00�	00� + 
 jâ�
†�j��00�	00�â��j�

�19�

in terms of the modal purity,


 j =
�� j�2 + �� j�2

Pj
, �20�

where

â�
†�j� = cos � jâ0

† + sin � jâ1
† with tan � j = � j/� j �21�

is an operator that creates a single photon in a superposition
of mode 0 and mode 1. State �19� produced from a detection
event in mode j is a mixed state, mixing vacuum and a
single-photon state with weight 
 j. Without conditioning or
in the limit 
 j→0, we have � j = �00�	00�.

D. Wigner functions

Squeezed vacuum. Before determining the output Wigner
function corresponding to conditional state �19�, it is instruc-
tive to first determine the Wigner function of the output state
in the simplest experimental situation, where the input state
is �= �00�	00� and where we ignore the photon detector. De-
tails of the calculation of this Wigner function can be found
in Appendix A. The result is that the output signal entering
the homodyne detector is a squeezed vacuum state with a
Gaussian Wigner function

W0,sqz�x,p� =
1

��VxVp

exp�−
x2

Vx
−

p2

Vp

 , �22�

where x and p stand for xh,out and ph,out. The variances are
given in terms of the mode-reduction parameters as

Vx = �� + ��2 + �2, �23a�

Vp = �� − ��2 + �2. �23b�

We can now invert Eq. �23� and rewrite the three mode-
reduction parameters �, �, and � in Eq. �7� in terms of the
variances, giving

� =
Vp + Vx + 2

2�Vx + Vp + 2
, �24a�

� =
Vx − Vp

2�Vx + Vp + 2
, �24b�

� =
2�VxVp − 1

2�Vx + Vp + 2
. �24c�

In the following, we will keep writing �, �, and � to shorten
notation. It should be kept in mind, however, that Eq. �24�
directly expresses these parameters in terms of the measur-

able variances Vx,p of the squeezed vacuum. In particular, �
vanishes for minimal-uncertainty states.

Notice also that the parametrization for the mode-
reduction parameters �24� is equivalent to the one in Eq. �12�
in terms of squeezing parameters r and g. Thus r and g can
be expressed in terms of the variances Vx,p and vice versa.

Photon-subtracted squeezed vacuum. As for the squeezed
vacuum, we can calculate the Wigner function for the
photon-subtracted squeezed vacuum, starting with initial
state �19�. The details of the calculation can again be found
in Appendix A. The result is

Wj�x,p� = �Cj + 2Aj
x2

Vx
2 + 2Bj

p2

Vp
2 + Dj

xp

VxVp

W0,sqz.

�25�

The constants in this Wigner function in terms of the mode-
reduction parameters are given by

Aj = Pj
−1�� j�� + �� + � j��2, �26a�

Bj = Pj
−1�� j�� − �� − � j��2, �26b�

Cj = 1 − Aj/Vx − Bj/Vp, �26c�

Dj = − 8Pj
−1 Im�� j

�� j��� . �26d�

Note that Wigner function �25� of the photon-subtracted
squeezed state differs from the Wigner function of the
squeezed vacuum W0,sqz�x , p� of Eq. �22� only because of the
polynomial in x and p between the large brackets. The same
quantities Vx,p as in Eq. �23� show up, with or without con-
ditioning. Since, in general, W�x , p��−�−1 �27�, we find the
condition Cj �−�VxVp.

Averaged Wigner functions. Practical detectors do not re-
solve with infinite precision when and where photons are
detected. We should therefore average over all possible mi-
croscopic states that agree with the detection record. We as-
sumed in Sec. II C that the average number of photons de-
tected per pulse in the APD is much smaller than 1.
Averaging over unresolved detection events is then equiva-
lent to averaging over single-photon-subtraction events.

The Wigner transformation of the density matrix is a lin-
ear transformation. Therefore, the averaged Wigner function

W̄�x , p� is simply obtained by replacing Aj , . . . ,Dj in Eq. �25�
by Ā , . . . , D̄, with the notation

X̄ = Ptot
−1�

j

PjXj . �27�

Here Ptot is the sum of the probabilities Pj of microscopic
states that agree with the detection record. From Eq. �26� it

follows that averaged quantities Ā , . . . , D̄ involve sums such
as � j�� j�2, � j�� j�2, or � j� j

�� j; in the following we will write
the respective averages as ���2, ���2, or ���.

Wigner function �25� of the photon-subtracted state and
its detection-averaged version have a very general signifi-
cance. Before going to Sec. III, devoted to a practical imple-
mentation of these results, let us finish with some reflections
on the detection modes.
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E. Detection modes

All the previous results were derived through the use of a
set of detection modes âd�j�. The coefficients entering in the

averaged Wigner function W̄ involve quantities such as Ptot,
���2, ���2, or ���, in which the detection operators only ap-
pear through their projection operator,

� = �
j

�� d�j��� d
†�j� . �28�

Hence one would find the same predicted averages if one
would employ a different set of detection modes that has the
same associated projector. This projector describes how the
setup filters the signal before it enters the photon detector.
For example, a time-domain filtering system will be de-
scribed by �=�T, where �T can be written in terms of a set
of modes â�t� that are labeled by the time t,

�T�t,t�� = T�t���t − t�� , �29�

where T�t�=1 when the APD is switched on and T�t�=0
otherwise. To give another important example, a spectral slit
can be described with a set of modes â��� with an associated
projector

����,��� = T������ − ��� , �30�

where T���=0 if the frequency � is filtered out and T���
=1 otherwise.

Above we have assumed that the filtering of the signal
after its production in the DOPA was included in the Bogo-
liubov transform U. Below we will give an alternative de-
scription, in which U is separated into the transformation due
to the production of the squeezed light in the DOPA and the
subsequent filtering before detection. This alternative de-
scription will enable a more straightforward comparison with
the empirical model in Sec. III.

So, instead of the input-output transform �Eq. �6�� for the
photon detection operator, we now write

âd,out�j� = �� d
†�j�uf�uâ� + vâ��� , �31�

where the Bogoliubov matrix uf accounts for filters �as the
filters are passive, we have v f =0�; this matrix uf is of course
unitary even if the filters can present losses. In fact, losses
will be modeled using beam splitters, where the lost energy
is reflected into auxiliary nonrelevant modes. These modes
do not interact with the rest of the experiment �i.e., they are
unaffected by Bogoliubov transform u , v� and will not
reach the APD. But all the other modes, referred to as rel-
evant modes, should be considered as detection modes, and
we then have

�
j

�� d�j��� d
†�j� = �r, �32�

where �r is the projector onto the subspace of relevant

modes. Let �̄r be the projector on the nonrelevant modes. As
the latter are unaffected by the transform u , v, we have

�̄r�uâ� +vâ���=�̄râ� . Inserting the relation �r+�̄r=1 into Eq.
�31� then it leads to

âd,out�j� = �� d
†�j�uf�r�uâ� + vâ��� + �� d

†�j�uf�̄râ� . �33�

Here the last term on the right annihilates vacuum and com-
mutes with annihilation operators such as â0 or â1: this term
will add no contribution to the results of Sec. II D The only
change therefore consists in the substitution �� →�ruf

†�� , so
that the operator � in Eq. �28� should be replaced by

�� = �ruf
†�

j

�� d�j��� d
†�j�uf�r = F†F , �34�

where F=�ruf�r and where we have used standard proper-
ties of projection operators ��=�†, �2=��. The operator F
represents the action of the filters restricted to the subspace
of relevant modes. If F is a projector, such as �T of Eq. �29�
or �� of Eq. �30�, then the effect of �� is the same as of �
in Eq. �28�. This can be easily understood: it is equivalent to
say that the filtered modes are blocked or that they are first
redirected into auxiliary modes and then blocked.

The operator �� of Eq. �34� is a more general quantity
than � in Eq. �28�, however, since �� need not be a projec-
tion operator. It can, for instance, account for partial absorp-
tion of the modes. In that case, the spectral transmission
T��� in Eq. �30� can assume any value between 0 and 1 to
account for filtering systems more complex than a simple
spectral slit.

Furthermore, the above expressions can simply be gener-
alized to situations where several filters are used. For ex-
ample, if a spectral slit �� is followed by a time-domain
filter �T, then the above expressions for F and �� become
F=�T��, leading to ��=���T��.

III. APPLICATION

At this stage, we have a complete description of the final
state starting from Bogoliubov transform �1�. The results of
Sec. II E are generally valid since we started with a multi-
mode model that was left unspecified. Our purposes now are
to establish a concrete link with the photon-subtraction ex-
periment as described in Ref. �10� and to improve its analy-
sis.

A. Photon subtraction experiment

In the experiment by Ourjoumtsev et al. �10�, pulses of
squeezed light are produced. The setup is sketched in Fig. 3.

2ω
ω

DOPA

APD

R<<1

spatial
and spectral
filters

Photon subtracted state homodyne
detection

FIG. 3. Simplified experimental setup: a squeezed vacuum is
generated by a DOPA, where photons of frequency 2� are trans-
formed into pairs of photons of frequency � �in the experiment, the
central frequency �0 corresponds to a central wavelength of about
850 nm�. The output signal of the DOPA is sampled by a beam
splitter with low reflectivity R. If a photon is detected by the APD,
then ideally it has been subtracted from the squeezed vacuum.
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A squeezed vacuum, produced in a single-pass DOPA �a
KNbO3 crystal� by down-conversion of frequency-doubled
femtosecond laser pulses, is sampled by a beam splitter �BS�
with low reflectivity R=1−T. Two mode filters are placed in
front of the APD: a spatial mode filter, which consists of a
single-mode fiber, and a spectral slit of width �. If a photon
is detected by the APD, then ideally it has been subtracted
from the squeezed vacuum. This subtraction leads to a one-
photon squeezed state, which is very close to a “Schrödinger
catlike” state. Quantum state tomography with a balanced
homodyne detector �27� allows the complete reconstruction
of this highly non-Gaussian quantum state of light.

Wigner function �25� was derived assuming that the mode
reduction was performed on the mode entering the homo-
dyne detector. To relate our results to the empirical model
discussed in Sec. III B, we here choose to perform the mode
reduction to the signal directly after the DOPA. We model
the DOPA using the scheme presented in Fig. 2, where the
parameters r and g are linked to the Bogoliubov transform
through Eqs. �9�–�11� and �12a�–�12c�. For the calculation of
the modes âd,out�j� detected by the APD, the sampling beam
splitter and the mode filters can be separately added to this
transform, as explained in Sec. II E. As stated above, here we
chose not to include the sampling beam splitter into the
mode reduction. Wigner function �25� then describes the sig-
nal just after the DOPA. We therefore still need to account
for this sampling beam splitter between the DOPA and the
homodyne detection, as well as for other losses. For ex-
ample, one usually accounts for imperfections of the homo-
dyne detection by adding a fictitious beam splitter of trans-
mission �hom just before the homodyne detection, where
�hom is the homodyne detection efficiency. Both those beam
splitters can be easily implemented by replacing the vari-
ances according to

Vx/p
�m� − 1 = �homT�Vx/p − 1� �35�

and by multiplying A, B, and D by �homT. Before going into
detailed calculations, let us first recall the empirical model
that was proposed in Ref. �10� to account for the experimen-
tal results.

B. Empirical model

It is useful to recall the empirical model proposed in Ref.
�10� to explain the experiments and to see by what assump-
tions our multimode model reduces to it. The DOPA is again
modeled as in Fig. 2, producing the same squeezed vacuum.
However, in the empirical model it is assumed that the de-
tected photon is either in the homodyne mode with probabil-
ity 
 or in an orthogonal mode with probability �1−
�. In the
latter case, the detection event is not correlated with the ho-
modyne measurement, and one simply performs a homodyne
measurement on squeezed vacuum.

The output density matrix obtained with the empirical
model is similar to our � j in Eq. �19�. In fact, the two would
be identical if the detected photon was only due to photons in
the mode �h or from H�. This is, in general, not the case,
however, as there will be an admixture from â1,out in the
photon detection operator. In fact, in order to completely

account for the multimode nature of this experiment, the em-
pirical model should be modified in the way depicted on Fig.
4, with the insertion of a beam splitter of amplitude reflection
and transmission coefficients � and � that allows interference
between âh,out and â1,out. A photon detection event in such a
setup can indeed be equivalent to the application of â�

†�j� to
the initial vacuum �see Eqs. �19� and �21��, provided

�

�
cosh�r� =

1

tan � j
−

1

tan �0
, �36�

with tan��0�=� /�. These angles �0 and � j are mixing angles
that fix the probability amplitudes of detection of a photon of
mode 0 and mode 1. Our angle � j, in general, depends both
on the squeezing properties of the light source and on the
filtering of the signal before the photon detector, whereas the
empirical �0 only depends on the source. Within a narrow-
filter approximation that will be detailed in Sec. III C, such a
setup can also account for averaged quantities �27� with the

use of an average angle �̄ instead of � j �see Eq. �52� in the
following�.

This possibility of interference between the homodyne
signal and the â1,out signal is the crucial difference between
the multimode and the empirical models: more interference
makes the empirical model worse. The essential assumption
of the empirical model is thus that the photon detection op-
erator does not have a contribution from â1,out. Then � j and
� j could be replaced by � and �, respectively, according to
Eqs. �7� and �13� and the angle � j in Eq. �19� by �0 �in which
case, according to Eq. �36�, the BS �� ,�� in the equivalent
model in Fig. 4 can be removed�.

The empirical Wigner function can be easily deduced
from Eq. �25� with the above replacements and has the same

form after the replacement of Ā , . . . , D̄ by Aemp, . . . ,Demp.

Coefficients Aemp and Bemp are obtained by multiplying Ā

and B̄ by 
 / 
̄ and replacing �̄ and �̄ by � and �, respectively.
This gives

ah,out

a1,out

Homodyne
Detectionr gr0

0

APD

R<<1

R<<1

BS (ρ,τ)

FIG. 4. When one applies the mode-reduction procedure to the
multimode model for photon subtraction as sketched in Fig. 1, the
resulting Wigner function is equivalent to the two-mode model de-
picted in the figure. The DOPA may, in general, be represented by
an ideal single-mode DOPA and a two-mode NDOPA as in Fig. 2,
and the photon counting is a combination of dark counts as well as
a coherent mixture of the two output ports of the NDOPA. Com-
pared to the empirical model developed in Ref. �10�, the only dif-
ference is the presence of the BS �� ,�� that was not present in the
empirical model.
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Aemp = 

�Vx − 1�2

Vx + Vp − 2
, Bemp = 


�Vp − 1�2

Vx + Vp − 2
. �37�

The coefficient Cemp is given by Cemp=1−Aemp /Vx−Bemp /
Vp and Demp vanishes.

The empirical model produces intuitive results. However,
it requires justification. If large spectral slits would be used,
then the homodyne mode and many other orthogonal modes
would hardly be affected by the slit. If the detected photon
could have come from many modes orthogonal to �h, then
the modal purity 
 would be unacceptably low and also a
large admixture of â1,out would enter the detection signal.
Indeed, some of us found experimentally that the spectral slit
should be as narrow as possible, while still allowing the de-
tection of a signal, in order to find the highest modal purities
�see also Sec. III C�. Consequently, narrow slits have been
used in the photon-subtraction experiment �10�. Although it
is obvious that filtering is necessary, the use of a narrow
spectral slit before the photon detector does not make the
empirical model automatically valid. A quantitative compari-
son of both models is therefore needed to test the validity of
the empirical model, as is given below.

C. Concrete multimode model

Let us now develop a simple spatiotemporal multimode
model for which the Bogoliubov transformation can be writ-
ten explicitly. We assume that light propagation inside the
DOPA is described by modes of the form

A�r�,t�exp�i�0t − ik� · r�� , �38�

where the plane wave is exactly phase matched and where
the amplitude A satisfies the slowly varying envelope ap-
proximation �SVEA�. This approximation does not hold for
all the light that exits the nonlinear crystal, but the homodyne
mode is supposed to be phase matched, and we will assume
that the filters before the APD block the modes that are not
phase matched. We will furthermore neglect diffraction ef-
fects within the DOPA. In the basis �x ,y , t�, where x and y
are spatial variables running on the DOPA’s transverse plane,
the u and v of Bogoliubov transform �1� then become diag-
onal �see Appendix B�, and we have

âout�x,y,t� = u�x,y,t�â�x,y,t� + v�x,y,t�â†�x,y,t� �39�

in terms of operators that we assume to have commutation
relations

�â�x,y,t�, â†�x�,y�,t��� = ��x − x����y − y����t − t�� .

�40�

The coefficients in transformation �39� have the form

u�x,y,t� = cosh�qlEP�x,y,t�� , �41a�

v�x,y,t� = sinh�qlEP�x,y,t�� . �41b�

Here EP�x ,y , t� is the pump-beam amplitude, which we as-
sume to be real valued. The parameter q takes into account
the nonlinearity of the crystal and l is its length. One can
allow for group velocity mismatch �GVM� in the crystal by

convoluting EP by a rectangular unit gate of duration �g the
time separation induced by the GVM after passing the crystal
�see Appendix B�. More precisely, this convolution should be
made twice, as we also have GVM for the second harmonic
generation �SHG� of the pump beam. The u and v are real-
valued functions if the pump beam EP is so, which is a valid
assumption if there is no frequency chirp. The homodyne
mode �h�x ,y , t��eh�x ,y , t� will also be taken real valued in
the following.

The homodyne signal is then given by âh,out=�ehâout,
where integration over x ,y , t is implied. Mode reduction now
starts with the identification

�â0 =� dxdydteh�x,y,t�u�x,y,t�â�x,y,t� , �42�

which is Eq. �8� specified for our spatiotemporal model. The
mode-reduction parameters are now given by spatiotemporal
integrals, for example,

�2 =� dxdydteh
2�x,y,t�u2�x,y,t� , �43a�

�� =� dxdydteh
2�x,y,t�u�x,y,t�v�x,y,t� . �43b�

Further parameters can be found analogously.
Averaging over photon detection events. We have seen in

Sec. II E that all averaged quantities can be obtained through
the determination of the operator � defined in Eq. �34� when
the filters are separately added to the Bogoliubov transform.
In the considered experiment two filters are used: a rectan-
gular spectral slit, which can be described using Eq. �30�,
and a monomode fiber that selects a single spatial mode
�s�x ,y�, which we suppose to be real valued, and therefore
corresponds to the projector �s�x ,y��s�x� ,y��. Note that in
this experiment detection times are unknown at the scale of
the pulse duration, so that there is no time-domain filtering.
�In the analysis one should average over all possible photon
detection times.� We therefore have to use

��x,y,�;x�,y�,��� = �s�x,y��s�x�,y��T������ − ��� ,

�44�

where T���=�cR if � enters into the spectral slit and T���
=0 otherwise. Here R is the sampling beam splitter reflectiv-
ity and �c accounts for all other losses in the conditioning
arm �APD efficiency, optics losses, etc.�. As can be seen
from Eq. �38�, the field amplitudes are defined around a
central frequency �0 �or 2�0 for the DOPA pump beam
�see Appendix B��, so that the frequency �=0 for the ampli-
tude Fourier transform corresponds, in fact, to this central
frequency; in that way, a rectangular spectral slit well
centered around this central frequency can be defined as
�� �−� /2,� /2�. The operator � defined in Eq. �44� should
be applied to Fourier-transformed mode functions,
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�̃��� =� dt��t�e−i�t. �45�

Using Eqs. �16�, �44�, and �45�, the average total photon
detection probability per pulse then becomes

Ptot =
�cR�

4�2 � dxdydtv2�x,y,t��s
2�x,y� , �46�

where the average is taken over the detection modes
�d,j�x ,y , t�. Expression �46� increases linearly with the filter
width �, but it is valid only if � is small enough to warrant
the SVEA. Furthermore, when conditioning upon a click in
the detector in Sec. II C, we assumed that Ptot�1, an as-
sumption that can now be tested with explicit formula �46�.

In general, the parameters � and � appear in W̄ as product
sums such as ���=� j�� j�2 or ���=� j� j� j

�. In our concrete
model, the evaluation of detection-averaged coefficients in
the Wigner function involves integrals of the type

�cR

4�2� dxdydx�dy��
−�/2

�/2

d� f̃�x,y,��h̃��x�,y�,�� . �47�

For example, the average ��� is found by substituting both f̃

and h̃ in Eq. �47� by the time-domain Fourier transform of
the function ehuv�s�x ,y , t�. �Here and in the following, we
abbreviate products like f�x ,y , t�h�x ,y� by fh�x ,y , t�.� Since

f̃ and h̃ are Fourier transforms of real-valued functions, the
corresponding integrals �47� are real valued as well. Hence,
all mode-reduction parameters and coefficients in the Wigner

functions are also real valued. In particular, the coefficient D̄

in W̄ vanishes �see Eq. �26d��. It is not difficult to numeri-
cally evaluate integrals �47� and we will do that below, but
let us first focus on an additional approximation that can
considerably simplify these results, without becoming inac-
curate.

Narrow-filter approximation. We previously discussed the
experimental observation that the spectral slit should be as
narrow as possible. Another simplification is possible in that
case, which simply consists in neglecting in integrals �47�
the frequency dependence of the mode profiles within the

narrow width �, i.e., f̃�x ,y ,��� f̃�x ,y ,0� for ����� /2. Let
us recall that this value �=0 corresponds to the central fre-
quency �0 of the pulses, where the real-valued amplitudes
present a maximum. This has two consequences: first, the
presence of this maximum justifies a zero-order Taylor ap-
proximation, provided the spectral width � is much smaller
than the spectral width of the pulses �typically 2� /�, where �
is the pulse duration�; second, if all functions involved in Eq.
�47� present a maximum at �=0, then the narrow-filter ap-
proximation generates an upper bound for these integrals and
therefore for quantities such as ��2�, ��2�, or the modal purity


̄ �see �20� and �27��. This approximation will be applied and
tested in Sec. III D, dedicated to the numerical results. This
approximation brings the following simplification in inte-
grals �47�:

=
�cR�

4�2 � dxdy f̃�x,y,0�� dx�dy�h̃��x�,y�,0�

=
�cR�

4�2 � dxdydtf�x,y,t�� dx�dy�dt�h��x�,y�,t�� .

�48�

Evidently, we end up with separate integrals over f and h,
and using definitions �14� we obtain the averages

�̄ =
��cR�

2�

1

�
� dxdydtehuv�s�x,y,t� , �49a�

�̄ = −
��̄

�
+

1

�

��cR�

2�
� dxdydtehv

2�s�x,y,t� . �49b�

In the narrow-filter approximation, averages of products are

simply given by products of averages, ���= ��̄�2, ���= �̄�̄�,
etc. Essentially in the �→0 limit the filter removes any
temporal information about the time the photon was emitted
from the DOPA. The photodetection then corresponds to a
single mode with �=0, regardless of the average over detec-
tion times.

We therefore find for the photon-subtracted squeezed state
an average Wigner function of form �26�, with coefficients

Ā = Ptot
−1��̄�� + �� + �̄��2, �50a�

B̄ = Ptot
−1��̄�� − �� − �̄��2, �50b�

C̄=1− Ā /Vx− B̄ /Vp, and D̄=0. Using the same substitution in
Eqs. �20� and �21� we can also introduce the averaged modal
purity


̄ =
��̄�2 + ��̄�2

Ptot
�51�

and the average angle �̄ defined by

tan �̄ = �̄/�̄ . �52�

Constant profiles. Before dealing with a more realistic
case, it is interesting to focus on the case of constant profiles.
Let us assume a constant value for eh, EP, and �s within a
space-time support of volume �. The normalization of the
homodyne mode implies eh

2=1 /� and Eqs. �41� and �43�
lead to �=u, �=v, and �=0. As � vanishes, the mode â1 is
no more defined and Eqs. �14b� and �49b� cannot be used
anymore. In fact, the mode-reduction procedure now leads to
an effective single-mode model rather than a two-mode
model. The homodyne mode is now in the single-mode space
H1 spanned by â0 , â0

†. One can simply put � j =0 in Eq. �13�
and hence �̄=0. This leads to the average angle �̄=�0=0.

The modal purity becomes 
̄=1, as it should for a single-

mode model. Most importantly, we find C̄=−1, which ac-
cording to Eq. �26� corresponds to the most negative value
for the Wigner function at the origin, W�0,0�=−1 /�.

So, with constant profiles and a narrow-filter slit, we re-
cover from our multimode model the single-mode descrip-
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tion for photon-subtraction experiments. Since this limit
leads to the most negative Wigner function, it represents the
ideal limit for producing states for QIP applications at least
according to our simple multimode model. This shows that
the multimode nature essentially appears through the mode
distortions due to the nonconstant space and time profiles of
the pulses. The central role of gain-induced distortions is
particularly clear with regard to the multimode nature of the
squeezed vacuum produced by the DOPA: assuming a con-
stant pump field, which is assuming no gain-induced distor-
tions, is, in fact, enough to obtain �=0. Let us now return to
a more realistic model, taking into account these profiles.

Gaussian profiles. As a more realistic simplification, we
assume Gaussian profiles for the various fields. For instance,
we write the homodyne field eh as

eh�x,y,t� = eh,0 exp�−
x2 + y2

w2 
exp�− 2
t2

�2
 , �53�

where w is the beam waist, � is the duration of the Gaussian
pulse, and eh,0 is a normalization constant. The pump beam is
usually obtained by SHG in a crystal pumped by a beam
identical to the homodyne beam. In the lowest order of the
SHG process, the profiles of EP and eh

2 have the same shapes,
so we can assume another Gaussian profile,

EP�x,y,t� = E0eP�x,y,t� = E0 exp�−
x2 + y2

wP
2 
exp�− 2

t2

�P
2 
 ,

�54�

where one expects the pump pulse duration to be �P=� /�2.
However, if GVM is taken into account, this Gaussian profile
�54� must be convoluted by rectangular gates. In practice,
such convolutions lead to beam profiles that are still very
close to Gaussians.

The final Gaussian profile to be introduced here is the
spatial mode �s�x ,y� of the filter in front of the APD. It is the
LP01 mode of a monomode fiber that is well approximated by
a normalized Gaussian of waist wf. With these assumptions
of Gaussian profiles, all quantities of interest can be easily
computed �see Appendix C�.

D. Numerical results

Here our goal is twofold: first, to compare our multimode
analysis with the empirical model that was used before to
analyze photon-subtraction experiments. Second, by explor-
ing our multiparameter multimode model, we look for pa-
rameter regimes that are best suited for producing states with
the most negative Wigner functions.

Fixing basic parameters. First we fix some parameters of
our multimode model in order to present numerical results
and to see how much our analysis differs from the one in
Ref. �10�, where filtering before the photon detection was not
modeled explicitly. We take w=1.2wP and a transmission T
=90% of the sampling beam splitter. Moreover, we fix wf
=w /1.5, which is compatible with the coupling efficiency
into the filtering monomode fiber �approximately 80%; see
Ref. �10��.

Regarding efficiency of homodyne detection, the mode âh
considered in Sec. II was defined as the mode that perfectly

matches the local oscillator of the homodyne detection, in
other words the matching efficiency equals unity by defini-
tion in our model. The transmission of the optics and the
photodetection efficiency together lead to an overall effi-
ciency of homodyne detection �hom. We set �hom=0.93, in
agreement with Ref. �10�.

As stated above, if GVM is taken into account, the almost
Gaussian profile of the pump pulse is convoluted twice by a
rectangular gate with time window �g. A KNbO3 crystal of
length l=100 �m has �g=120 fs. For an initial duration of
the homodyne pulse ��150 fs, the convolutions indeed lead
to a nearly Gaussian beam profile with �P��. We assume the
identity �P=� in the following.

Negative Wigner functions. As stated in Sec. I, the global
minimum of a Wigner function is the standard figure of merit
for the nonclassicality and “non-Gaussianity” of the corre-
sponding state. After subtraction of a single photon, the

Wigner function W̄�x , p� is always most negative in the ori-

gin �since D̄=0�. Figure 5 shows how W̄�0,0� depends on
the squeezing factor s=exp�−2r�. The most negative values
are obtained in the low-squeezing limit s→1. This can be
understood as there is less gain-induced distortions in that
case.

In Ref. �10�, the best experimental results �highest modal
purities� were obtained for s=0.56. For this value of s, which
can be selected by choosing the right value for the quantity

qlE0, we obtain g=0.50 and W̄�0,0�=−0.034; the latter value
is close to what was observed in Ref. �10�, without correc-
tion for the detection efficiency. At this stage, it can be in-
teresting to compare this result, obtained using the narrow-
filter approximation, with a more accurate calculation based
on a complete evaluation of integrals �47�. Figure 6 shows

how W̄�0,0� at s=0.56 becomes less negative as the width �
of the spectral slit before the APD is increased. The horizon-
tal axis features the transmission that would result if the ho-
modyne mode would pass this slit. This transmission in-
creases monotonically with �. A minimal value is clearly
reached for low transmissions, justifying a posteriori the use
of narrow spectral slits in the experiment in Ref. �10�. Since

for low transmissions, W̄�0,0� does not differ much from its
minimal value, the narrow-filter approximation that we made
in Sec. III C gives accurate results.

−0.04

−0.02

0

W̄
(0

,0
)

0.2 0.4 0.6 0.8 1
s

FIG. 5. �Color online� Minimal value of the Wigner function,

W̄�0,0�, as a function of squeezing parameter s=exp�−2r�, which is
varied by changing the quantity qlE0. The narrow-filter approxima-
tion was made for the spectral slit. Fixed parameters: pulse param-
eters w=1.2wP, �P=�=150 fs, transmission of sampling beam
splitter T=90%, and efficiency of homodyne detection �hom=0.93.
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Figure 7 predicts the behavior of W̄�0,0� when varying
the size of the pump beam. Experimental values for the
widths were related by w=1.2wP �10�. Figure 7 clearly
shows that one can await a high increase in the negativity
from a larger pump beam. This result was intuitive, as there
are less gain-induced distortions in that case but is here
quantified. This can motivate the use of amplified pulses �28�
in order to have a spatially broader pump beam �i.e., with
larger wP� but with the same intensity.

Comparison with empirical model. Measured negative
Wigner functions were interpreted in Ref. �10� using the em-
pirical model as introduced in Sec. III B, where the photon is
subtracted in the “good” mode âh,out with probability 
 and
where the state is left in the squeezed vacuum with probabil-
ity �1−
�. As explained before, the main difference between
the empirical and our models is that the conditioned state in
the former corresponds to the single-photon initial state â�0

†

with tan �0=� /�, while it corresponds to â
�̄

†
in the latter,

with tan �̄= �̄ / �̄. These angles �0 and �̄ are mixing angles
that fix the probability amplitudes of detection of a photon of

mode 0 and mode 1. Figure 8 shows �0 and �̄ as a function of

the squeezing parameter s. Clearly, �0 and �̄ do not differ too
much and by less than 10% for s=0.56.

Another important difference between our model and the
empirical model is that the modal purities 
 j in our model are

fixed by relation �20�, whereas the parameter 
 in the empiri-
cal model is a free parameter. This freedom can be used to fit

the data, i.e., to have Aemp= Ā or Bemp= B̄. It is however not a

priori possible to fit both parameters Ā and B̄ �Eqs. �50a� and
�50b�� from Eq. �37� using only the fitting parameter 
. In
neither model should the variances Vx and Vp be considered
as free fitting parameters of the photon-subtraction experi-
ment, at least their values should agree with the values for
Vx,p obtained by homodyne measurements of the squeezed
vacuum.

In our model the mixing angles � j and their average �̄ take
into account the filtering of the signal that is used for condi-
tioning. In the empirical model, the corresponding angle �0 is
independent of the filtering. Thus it is to be expected that this
inaccuracy of the empirical model will lead to optimally fit-
ted modal purities 
opt in the empirical model that are sys-

tematically lower than the average modal purity 
̄ in our
model. This is indeed what we find for the curves in Fig. 9:
the best fit in the present example is obtained for 
opt=0.87,

a value that is indeed smaller but still close to 
̄�0.91. The
high quality of this fit �with an error less than 1.2%� is di-

rectly linked to the fact that in the present case �0� �̄.
There is a possibility to improve this result if g is consid-

ered as a fitting parameter as well. We obtained an error of
less than 0.4% between the Wigner functions for 
opt=0.89
and gopt=0.53, i.e., for a value of g that differs by 6% from
the value given by the multimode model. In other words, if g
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FIG. 6. �Color online� Minimal value of the Wigner function,

W̄�0,0�, as a function of the opening of the spectral slit, expressed
using the corresponding transmission that would result if the homo-
dyne mode would pass this slit. Calculated for s=0.56, using a
complete evaluation of integrals �47�, i.e., without the narrow-filter
approximation. The narrow-filter approximation is well satisfied for
low transmissions.
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FIG. 7. �Color online� Minimal value of the Wigner function,

i.e., W̄�0,0�, as a function of wP /w, where wP is the waist of the
pump field and w is the waist of the homodyne field. qlE0 is fixed
such that squeezing parameter s=0.56. Other parameter values as in
Fig. 5.
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FIG. 8. �Color online� Mixing angles �̄ �solid line� and �0

�dashed line� of modes 0 and 1 as a function of squeezing parameter
s, which is varied by changing qlE0. Other parameter values as in
Fig. 5.
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FIG. 9. �Color online� Sections along �x ,0� and �0, p� of the

Wigner function W̄�x , p� �solid line� and corresponding best fits
using the empirical model �dashed line� with 
opt=0.87. Parameter
values as in Fig. 5. Results of our model and the empirical fits
almost overlap.
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has a great influence on Aemp and Bemp in Eq. �37�, it has a
very low impact on Vx, Vp; the change from g=0.50 to gopt
=0.53 modifies the values of Vx, Vp by only a few 10−3, and
for this reason it is very difficult to accurately measure g
from squeezed vacuum �26�. These considerations explain
why the empirical model can fit experimental data so suc-

cessfully; even when �0 is not equal to �̄, the parameter g
gives a supplementary freedom for fitting.

IV. DISCUSSION AND CONCLUSIONS

We have introduced a straightforward and physically in-
tuitive procedure that we call “mode reduction” to simplify
the multimode description of squeezed light to the bare es-
sentials. For photon-subtraction experiments, this means that
the homodyne signal is reduced to an effective two-mode
description and the detector signal requires one extra or-
thogonal effective mode. We derived the Wigner function of
the homodyne signal conditional upon the detection of a
single photon, and we also showed how to average over pos-
sible measurement outcomes.

The general mode-reduction formalism was then applied
to a detailed model describing photon subtraction of Gauss-
ian spatiotemporal pulses of squeezed light. This model fea-
tures many experimental parameters such as beam waists and
duration of the pulses that can be independently measured.
Indeed, our model does not have free fitting parameters. This
allows one to study in detail what are the crucial experimen-
tal parameters to produce optimally negative Wigner func-
tions with pulses of squeezed light.

We compared our new model to the empirical model that
was used before to analyze photon-subtraction experiments
in Ref. �10�. In fact, the formulas for the output Wigner
functions look similar. One crucial difference is that the em-
pirical model does have a free parameter, namely, the quan-
tity called the modal purity. In our model modal purities also
occur, be it with a slightly different meaning, but they are
fixed quantities. A good agreement between our model and
experiments therefore gives more understanding than an ac-
curate fit with the empirical model.

We found that in the range of parameters of the measure-
ments in Ref. �10�, both our model and the empirical model
are accurate. We reasoned that the modal purities in our
model would be systematically higher, and in our numerical
example we found this to be the case. The accuracy of the
empirical model strongly depends on the availability of the
free parameter. It was nevertheless a surprise in the theoret-

ical analysis that the mixing angles �0 and �̄, describing the
relative probability of measuring a photon in either one of
the two effective modes, differ at most 20% in a whole range
of squeezing parameters.

Our mode-reduction procedure is closely related to the
analysis of photon-subtraction experiments in Refs. �19–21�.
One could express our mode-reduction parameters in terms
of elements of the covariance matrix in Refs. �19–21�. Our
output Wigner function in Eq. �25� then reduces to the one in
Ref. �21�, but only in the special case that all our mode-
reduction parameters are real valued so that Dj in Eq. �26d�
vanishes. We assumed this for simplicity in Sec. III C. Our

mode-reduction procedure is carried out in the Heisenberg
picture. We think that our approach has some advantages. In
our approach it becomes quite intuitive in what sense it goes
beyond the empirical model in Ref. �10�. In our concrete
multimode analysis, we include effects not considered in
Ref. �21�, such as the transverse beam profile, for which we
found that wider pump beams lead to more negative Wigner
functions.

In conclusion, we presented a very concise model that can
account for the multimode nature of projective photon-
counting measurements. It gives an intuitive picture of
photon-subtraction experiments, close to the empirical model
previously published. This multimode model therefore gives
consistent results, in agreement with previously published
experiments where pulses of light with negative Wigner
functions were produced conditionally. Our model can be
used to predict the changes in the output upon variation in
experimentally relevant parameters and to optimize the setup
design.
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APPENDIX A: WIGNER FUNCTIONS

In this appendix we derive expressions �22� and �25� for
the Wigner functions of the squeezed vacuum and of the
photon-subtracted squeezed vacuum.

Squeezed vacuum. Before determining the output Wigner
function corresponding to conditional state �19�, it is instruc-
tive to first determine the Wigner function of the output state
in the simplest experimental situation, where we ignore the
photon detector. The input state is then �= �00�	00�. We will
make use of the standard Wigner functions of the vacuum
W0�x , p�=exp�−r2� /� and of single-photon states W1�x , p�
= �2r2−1�exp�−r2� /�, both with r2=x2+ p2. Clearly,
W����x0 , p0 ;x1 , p1� equals W0�x0 , p0�W0�x1 , p1�.

In order to obtain the output Wigner function for the ho-
modyne mode, we wish to express W��� as a function of
xh,out, ph,out �defined from the output homodyne mode âh,out
given by Eq. �7��. This requires the introduction of another
mode â1,out orthogonal to ah,out, so that the transformation
�â0 , â1�→ �âh,out , â1,out� is symplectic �i.e., commutation rela-
tions are preserved�. Using the model of Fig. 2, one can
choose â1,out of the form

â1,out = �
�â0 + �â0

†

�1 + �2
+ �1 + �2â1. �A1�

This form is by no means unique, but this does not pose a
problem since mode 1out will eventually be integrated out.
One can now invert relations �7� and �A1�, thereby express-
ing x0,1 , p0,1 as a function of xh,out, ph,out, x1,out, and p1,out.
After tracing over mode 1out, which amounts to integrating
over x1,out and p1,out, we find the output signal entering the
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homodyne detector to be a squeezed vacuum state with a
Gaussian Wigner function given in Eq. �22�.

Photon-subtracted squeezed vacuum. As for the squeezed
vacuum, we now calculate the Wigner function for the
photon-subtracted squeezed vacuum, starting with the initial
state in Eq. �19�. The mode defined in Eq. �21� has a one-
photon excitation in the state in Eq. �19�. The orthogonal
mode with creation operator â�+�/2

† �j� is not excited. Hence
the Wigner function corresponding to state �19� is

W�x0,p0;x1,p1� = �1 − 
 j�W0�x0,p0�W0�x1,p1�

+ 
 jW1�x�j
,p�j

�W0�x�j+�/2,p�j+�/2� .

�A2�

Note that in this expression, quadratures x�j,�j+�/2, p�j,�j+�/2
can be easily expressed as functions of quadratures x0,1 , p0,1
using Eq. �21�. As before, the Wigner function for the output
signal is found by using the symplectic transformation de-
fined by Eqs. �7� and �A1� and by tracing again over the
mode 1out.

Here we show in detail how this tracing out can be per-
formed. One has first to invert Eqs. �7� and �A1�, leading to

â0 = ��âh,out −
�â1,out

†

�1 + �2
 − ��âh,out
† −

�â1,out

�1 + �2
 , �A3�

â1 = �1 + �2â1,out − �âh,out
† . �A4�

One should then replace in Eq. �A2� x0,1 , p0,1 by xh,out,
ph,out, x1,out, and p1,out and integrate over x1,out, p1,out. It is
however convenient to make a change in variables so that the
integral is over x1, p1 instead of x1,out, p1,out. In this case the
only transforms needed for this calculation are

x0 =
� − �

1 + �2 �xh,out − �x1� , �A5a�

p0 =
� + �

1 + �2 �ph,out + �p1� , �A5b�

as well as the transformation of the integral

� dx1,outdp1,out =
1

1 + �2� dx1dp1. �A6�

One should then note that Wigner function �A2� is the prod-
uct of a polynomial in x, p and of a Gaussian term
exp�−R2�, with

R2 = x0
2 + p0

2 + x1
2 + p1

2 = x�
2 + p�

2 + x�+�/2
2 + p�+�/2

2 . �A7�

With Eq. �A5�, the exponent can be rewritten as

R2 =
Vx

�� + ��2�x1 −
�xh,out

Vx

2

+
xh,out

2

Vx

+
Vp

�� − ��2�p1 −
�ph,out

Vp

2

+
ph,out

2

Vp
.

Integral �A6� with Eq. �A2� as its integrand can then be
found by replacing in the integrand the squares x1

2 and p1
2 by

x1
2 →

�2xh,out
2

Vx
2 +

�� + ��2

2Vx
, �A8a�

p1
2 →

�2ph,out
2

Vp
2 +

�� − ��2

2Vp
, �A8b�

and by replacing the first-order terms according to

x1 →
�xh,out

Vx
, �A9a�

p1 →
�ph,out

Vp
. �A9b�

After thus integrating out the mode 1out, we obtain Wigner
function �25� for the photon-subtracted squeezed vacuum.

APPENDIX B: SLOWLY VARYING ENVELOPE
APPROXIMATION

The goal of this appendix is the derivation of local Bogo-
liubov transformation �39�. We assume that inside the DOPA
the pump pulse with an angular frequency 2�0 travels at a
speed vg,2�0

, with negligible absorption. This field can there-
fore be written as

iEP�x,y,t −
z

vg,2�0

− �t
exp�2i�0t − ik�2�0
· r�� , �B1�

where �t is an arbitrary time delay and where “i” is a purely
conventional phase factor. Let us write the probe beam as

E�r�,t� = A�r�,t�exp�i�0t − ik�0
· r�� , �B2�

where the phase-matching condition k�2�0
=2k��0

is assumed to
be satisfied. By using the SVEA in Maxwell’s equations,
neglecting diffraction terms, and considering the first-order
dispersion, we obtain

�A

�z
+

1

vg,�0

�A

�t
= qEP�x,y,t −

z

vg,2�0

− �t
A�, �B3�

where A=A�r� , t�. The substitution of t−z /vg,�0
by t then

leads to

�A

�z
�r�,t� = qEP�x,y,t − Dz − �t�A��r�,t� , �B4�

where D=vg,2�0

−1 −vg,�0

−1 is the GVM. With the assumption that
EP is real valued, the solution to Eq. �B4� becomes

Aout = cosh�qlFP�Ain + sinh�qlFP�Ain
� , �B5�

where the �x ,y , t� dependence was suppressed. The effective
pump field FP is given by

FP =
1

l
�

0

l

dzEP =
1

�g
�

�t

�g+�t

d�EP�x,y,t − �� , �B6�

with �g=Dl as the time separation induced by the GVM after
crossing the crystal. Equation �B6� shows that the effective
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pump field FP is a convolution of the pump field EP with a
rectangular unit gate of duration �g, which for �t=−�g /2 is
centered on the origin. As the quantized version of Eq. �B5�,
we then find Eq. �39� of the main text. The pump field EP of
the main text is to be understood as the effective pump field
FP derived here. Evidently, FP→EP in the limit �g→0 �no
GVM�.

APPENDIX C: EXPANSIONS IN PUMP FIELD

For our numerical work it is convenient to write all fields
as Taylor expansions in the pump field EP. From Eq. �40� it
follows directly that

u2�x,y,t� =
1

2
+

1

2
cosh�2qlEP� = �

m

bmeP
m, �C1a�

uv�x,y,t� =
1

2
sinh�2qlEP� = �

m

cmeP
m, �C1b�

v2�x,y,t� = −
1

2
+

1

2
cosh�2qlEP� = �

m

dmeP
m, �C1c�

with EP=E0eP�x ,y , t� as in Eq. �54�. This defines the con-
stant coefficients bm, cm, and dm. For qlE0�1 these expan-
sions converge quite quickly. We then only have to insert
relations �C1� into the various integrals for an efficient nu-
merical evaluation. For instance, we can rewrite Eq. �43a� as

�2 = �
m

bmPm, �C2�

with

Pm =� dxdydteh
2eP

m =
2�2wP

2 �P

�mw2 + 2wP
2 ��m�2 + 2�P

2
. �C3�

In the same way we have

�� = �
m

cmPm, �C4a�

Ptot = �cR��
m

dmQm, �C4b�

�̄ =
��cR�

�
�
m

cmRm, �C4c�

�̄ = −
��̄

�
+

��cR�

�
�
m

dmRm, �C4d�

with

Qm =
1

4�2� dxdydt�s
2eP

m =
�−3/2�PwP

2

2�2m�mwf
2 + 2wP

2 �
,

�C5a�

Rm =
1

2�
� dxdydt�seP

meh

=
�−3/4

����−2 + m�P
−2

1

wwf�w−2 + mwP
−2 + wf

−2�
. �C5b�

After fixing the parameters, these expansions in the pump
field can be readily used for numerical evaluations.
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