Plasmonic nanostructures: local versus nonlocal response
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ABSTRACT

We study the importance of taking the nonlocal optical response of metals into account for accurate determination
of optical properties of nanoplasmonic structures. Here we focus on the computational physics aspects of this
problem, and in particular we report on the nonlocal-response package that we wrote for state-of the art numerical
software, enabling us to take into account the nonlocal material response of metals for any arbitrarily shaped
nanoplasmonic structures, without much numerical overhead as compared to the standard local response. Our
method is a frequency-domain method, and hence it is sensitive to possible narrow resonances that may arise
due to strong electronic quantum confinement in the metal. This feature allows us to accurately determine which
geometries are strongly affected by nonlocal response, for example regarding applications based on electric field
enhancement properties for which metal nanostructures are widely used.
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1. INTRODUCTION

One of the major reasons why plasmonics is currently so actively studied is the promise of miniaturization,
through the ability of metal structures to spatially confine optical fields to sizes smaller than the optical wave-
length (see, e.g.}). Another reason is the possibility of achieving huge enhancements of electric fields close to
metal structures, especially for geometries with sharp features.! As the sizes of plasmonic structures are made
ever smaller and geometries become sharper, at some point the description of the optical response of the metal by
the bulk Drude response function will break down and new physics emerges. The usual Drude response describes
how light interacts with the free conduction electrons of the metal, and an assumption that goes into this model
is that the conduction electrons can be described as if they move collectively and scatter amongst each other
in an infinite homogeneous medium. However, as metal structures become of dimensions much smaller than
an optical wavelength, at some point the electrons start to “feel the walls” and to probe the geometry of the
metal. A closely related issue is that the optical response of matter with moving charges should be described by
a dielectric function that takes spatial dispersion into account.?® This wave vector dependence of the dielectric
function can safely be neglected for bulk matter, but it starts to become important for sub-wavelength plasmonic
structures.

Effects of nonlocal response have been studied before,® but mainly for several simple geometries, such
as planar interfaces,>? (hollow) spheres,!?!2 and for metal nanowires.®!® However, there is a clear need for
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versatile general numerical tools that do not depend on any symmetries in the geometries of the plasmonic
structure.

In order to avoid confusion, remark that the nonlocal response that is the topic here is different from the
nonlocal response discussed in recent “homogenization” literature on effective parameters of metamaterials, where
an inhomogeneous metamaterial is described as an effective homogeneous medium, and the effective description
may not be possible unless nonlocal response is allowed for, see for example the measurements and theory for
nanorod metamaterials by Pollard et al.'*

Our philosophy in implementing Maxwell’s equations with nonlocal response has been to use well-tested
standard commercial software as much as possible. The numerical work consisted of writing a nonlocal-response
package as an add-on to standard commercial software (COMSOL), allowing fast and efficient determination of
effects of nonlocal response for arbitrary plasmonic geometries. Depending on the parameters, large qualitative
differences can be found between geometries with and without nonlocal response.

The structure of this paper is as follows: In Section 2 we briefly give a theoretical background of our numerical
efforts. The main section is Section 3, in which we discuss the numerical implementation of the nonlocal-response
calculation and present some benchmark calculations, to get an idea about the scaling of the required extra
computational effort. Finally, Section 4 contains the summary, conclusions and outlook.

2. THEORETICAL BACKGROUND

Nonlocal response means that the relative dielectric function € besides the usual frequency dispersion also has a
wave-vector dependence, in other words the relation between the electric displacement and electric fields is given
by

Dk, w) = goek,w)E(k,w). (1)

It is the wave vector dependence of the dielectric function that gives the nonlocal response, as we see below after
transforming Eq. 1 to real space. But first recall that the standard, local dielectric function for metals has three
components:

E(W) =€fx0 t+ €inter(w) + Z‘:intra.(w)v (2)

with £, the value for infinite frequency, €inter(w) is the contribution from the d-band electronic transitions, and
Eintra(w) is due to excitation due to excitations of the conduction electrons. The last term is the free-electron
term that is usually described by a Drude model,*® leading to the following simple contribution to the total

dielectric function:
w2

P

Eintra(w) = ep(w) = oW+ i’y)’ (3)
where w), is the plasma frequency of the metal, and the subscript D stands for ‘Drude’. The above local-response
model does not take into account the fact that conduction electrons move freely with typically the Fermi velocity
in the metal, until their momentum changes due to collision processes as captured in the single Drude parameter
~. But it is the finite velocity that leads to a k-dependence of the Drude response function e(k,w). This k-
dependence normally plays no observable role in bulk properties, as one can show, and is therefore usually left
out. But as we shall see, it may have important effects in nanoplasmonics.

Although the model (3) has proved to be accurate enough for many situations, it is expected to be no
longer accurate for very small ( of order ~ 10nm) metal nanostructures, where the size of the nanostructure is
comparable to the mean free path of the conduction electrons. We will now slightly modify the Drude response
function (3) so as to take nonlocal response into account:

wp
w(w +iy) — F2k2’

(4)

5intra(k7w) - <C-‘D(kvw) =
where 3 is related to the Fermi velocity, and depends on dimension of the geometry, and for example 3 = vp/v/2
for a free electron gas in 2D.# This corresponds to the hydrodynamical Drude model, and an excellent discussion

of what goes into its derivation is given in the review by Pitarke et al.? This model is also used in the recent
letter by McMahon et al.
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It should be remarked that more detailed and accurate models exist.?® Those more refined models developed
by solid-state physicists working on many-electron theory can be used by optic researchers at the expense of
increased computation time, and not necessarily leading to additional insight. In that sense, our choice to
work with the hydrodynamical Drude model is a compromise, but a useful one, since it allows one to calculate
interesting optical effects due to quantum confinement in nanoplasmonic structures of arbitrary shape.*

Now we can proceed as in McMahon et al.* to go to a real-space description of the coupled dynamics
between the optical electric field E and the electrons as captured in the “nonlocal phasor polarization current”
J.* However, our approach differs in an essential way from the numerical method introduced in,* in that we work
in the frequency domain rather than in the time domain. We find that the effect on the electric field E(r,w) of
the nonlocal material response can be found by solving the coupled equations of motion:

W2

{V x V x —51(w)c—2} E(r,w) = iwped(r,w), (5a)
5 w(w+1iy) W) = iegwiw -

v D )~ P B (5b)

As is clear from these equations, if the coupling parameters to the source-terms on the right-hand sides are
small, then the magnitude of optical wave vectors is of the order of w/c, whereas the magnitude of electronic
wave vectors at the same frequency are given by w/f (neglecting v for the moment since it is < w). Since [ is
related to the Fermi velocity vr and typically vp = 0.1c¢, a (very) crude estimate gives that the electronic wave
vectors are an order of magnitude larger than the optical wave vectors. In other words, electronic wave functions
vary on a smaller scale than optical mode functions.

The above coupled equations (5a,5b) are the central equations for calculating nonlocal response. Eq 5a is
a true vector wave equation for light, driven by the polarization current J, whereas Eq. 5b latter is a compact
notation for three scalar Helmholtz equations, one for every component of J, with the electric field as a driving
term. A difference between the two equations is that the light can travel in all of space, while the polarization
current is associated with the plasmonic response of the metal only. Mathematically we need additional boundary
conditions besides the usual ones for light to arrive at a unique solution of these coupled equations. The additional
assumption that we will make, and which is the simplest and most common thing to do at this point, is to assume
so-called Pekar boundary conditions. This simply means that we assume that J vanishes at the metal surface.
This is a good assumption as long as we are not studying the hereby neglected quantum tunneling effects.

3. NUMERICAL IMPLEMENTATION

Now we proceed with the description of our numerical method for calculating nonlocal response. The code
that implements Maxwell’s equations with nonlocal response is written in the COMSOL MATLAB language. It
consists of a modular code divided in two subprograms. The first subprogram performs the control tasks, and
the second subprogram is the main frame which implements the system of equations (5a,5b). It has been tested
on two UNIX machines equipped with Intel(R) Core(TM)2 Duo CPU E7200 and Dual-Core AMD Opteron(TM)
Processor 2212 HE, and running linux kernel version 2.6.31 and 2.6.18 respectively.

The test geometry for this code was studying the behavior of an infinite long circular nanowire when a linearly
polarized TE field directed along the rod axis incomes on it. The optical wavelength (=~ 600nm) is much bigger
than the dimension of the physical system (&~ 10nm), but the simulations reveal that they strongly interact
within each other in the non-local picture. The structure of this program is general, and it can be used for all
kinds of waveguide geometries besides the circular nanowire.

The first subprogram is a BASH script that sets the most important parameters at the startup (see Figure 1,
left part). These parameters include the radius of the nanorod, the dimensions of the simulation box, the flag
to enable the non-local effects, the mesh size, the order of the interpolating polynomials, and the name of the
output file. The bash script accesses the COMSOL MATLAB script before it starts, and it modifies the lines
where these parameters are included by means of UNIX commands for string manipulation, such as ewk and
cat. The bash script launches the main program afterwards. This command is included in a for statement that
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Figure 1. Flow diagram of the program discussed in the main text that calculates electromagnetic properties of plasmonic
structures with nonlocal optical response.

varies the wire radius, and it can be activated when a parametric simulation is needed. Dividing the program
into two subprograms makes the code both easier to read and run faster.

The main script (see Fig. 1 on the right) consists of five parts that perform the main tasks of a typical
Frequency Domain Finite Element program. The first part contains the declaration of constants and global
expressions.

The second part deals with the geometrical object definitions. Here a descriptive COMSOL language is used
to draw the simulation box and the integration domains. In this case the simulation box is a square with PML
boundary conditions at its external boundaries, to avoid electromagnetic waves to be reflected back by the walls.
This box contains the geometric domain representing the physical system under test. The dimensions of the box
can be varied in the bash script, in order to study systems at different scales.

The third part contains the commands that control the meshing properties of the integration domains. In
particular, it is possible to change the size of the meshes or to create adaptive meshes.

The fourth part is the core of the program (shown in green in Fig. 1). Its main objective is calculating the
scattering cross section of the metallic nanostructure under test at various frequencies. This is done by means of
the external for cycle that runs over different frequencies in the visible range. This part contains the declaration
of the governing equations in the various domain and of the boundary conditions. The TE wave equation model
is already included in the RF Module library of COMSOL, and likewise the Helmholtz equation is included in the
PDE models library. Usually one specifies the equations to be solved in the COMSOL modules in the familiar
differential form. However, the program actually solves the equations plus boundary conditions after writing
them in the integral form (or “weak form”).'® We found that we have to specify the equations in the weak form
from the start, in order to be able to calculate nonlocal response with COMSOL. In more detail, the equations

must be written in the weak form in order to add an inhomogeneous term to the wave equation for the electric
field.

The coupling between the two equations in this cycle is implemented by means of an inner cycle where the
equations are solved and the result is given as output if the solution converges. This cycle is automatically
provided by COMSOL when running in multiphysics mode, so that you do not need to implement it at a low
level. The outputs are the dependent variables of the system that in this case are given by the electric field, the
magnetic field, the magnetic potential, the divergence condition variable, and the current density.

The fifth part deals with the postprocessing process. In this part the data coming from the previous data flow
are processed and the scattering cross section is evaluated. This is implemented by performing the line integral
of the normal component of the Poynting vector along a circular path enclosing our structure. The line integral
calculation of a function is a useful command embedded in COMSOL.

Figure 2 shows the time it takes to do the computation as a function of the radius of the nanorod. The
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Figure 2. Comparison of the time to compute the current density in the nanowire with and without nonlocal response, as
a function of the wire radius R.

simulations were run on the AMD processor mentioned earlier. The local and non-local case were compared.
The main difference between the two models is that there are no coupled equations in the local model, so that the
green loop in Fig. 1 is not accessed. The results show that the elapsed times are comparable for small structures
(2nm < R < 16nm). As soon as the radius increases, the effect of the coupling equations becomes prominent
and the computational time for the nonlocal case increases, whereas it remains essentially constant in the local
model. The computational time is strongly affected by the number of points in the meshes, which affects the
dimension of the FE matrix to be inverted. This causes some fluctuations in the values as can be observed in
Fig. 2, because the meshes are automatically generated by COMSOL and they differ for each radius.

Figure 3 shows the current density in an R = 2nm nanorod when excited with a perpendicular optical plane
wave with energy 1.78eV. The local model shows no resonance in the structure, whereas the the non-local
structure exhibits a strong resonance.
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Figure 3. Current densities in a nanowire of radius 2nm when excited by a plane wave of 3.81eV, with and without
nonlocal response included.
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4. CONCLUSIONS, OUTLOOK AND DISCUSSION

In summary, we have studied the nonlocal optical response of small nanoplasmonic structures. We presented
our implementation of the numerical evaluation of the optical properties due to nonlocal response, and hope
that this will beneficial for colleagues embarking on similar explorations. Furthermore, it was shown that taking
nonlocal response into account gives rise to longer calculation times. For the wire geometry considered here,
the calculations are fast, on the order of a minute, but for more complex geometries further optimization may
be required. We showed the first results of the comparison between optical fields in the presence of only local
material response as compared to both local and nonlocal response. Since the differences can be substantial,
especially for small structures much smaller than optical wavelengths, this shows that the usual Drude bulk
description of metals breaks down.

Although the hydrodynamical Drude model that we employ is more accurate that the usual Drude bulk model
and we anticipate that it will predict several new observable phenomena in nanoplasmonics, it has its limitations
as well. The most obvious limitation is that additional boundary conditions need to be chosen, and our choice
of Pekar boundary conditions by definition excludes electronic quantum tunneling phenomena from the model.
We think this is an excellent approximation, unless one is interested in quantum tunneling itself and the optical
field that it generates.

After implementation of our method to calculate nonlocal optical response, a whole new class of problems
can be explored. For since our method is general, one is in the position to study arbitrary plasmonic structures
with it, and in the near future we plan to use our method to explore several other geometries of interest. One
area of research for which our work may become relevant is quantum plasmonics.!” 2 We also intend to use our
numerical method together with analytical calculations to get more insight when and where nonlocal response
will significantly alter the optical fields.
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