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Supplementary Figure 1: Panel a) Relative error δ of the absorption cross section σabs versus
number of mesh element for Na cylidrical nanowires for two radii: radius R = 2 nm (red squares)
and radius R = 20 nm (green squares). Panel b) Same as Panel a), now for Ag nanowires.
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Supplementary Figure 2: Absorption spectra for a Na nanowire with radius R = 2 nm obtained
with the SC-HDM (blue line) and with the TD-DFT Octopus package by Stella et al. in ref 10
(green line with yellow filling).
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Supplementary Figure 3: Absorption spectrum for the Na331 cluster (effective radius RC =
1.439 nm) obtained by Li et al. [11] (green line) compared with the absorption nanowire with
radius R = 1.5 nm obtained with the SC-HDM (blue line). The TD-LDA absorption spectrum is
expressed in arbitrary units, since it is given in terms of dipole oscillator strengths in ref. 11.

Supplementary Note 1

The general formulation of the hydrodynamic model [1] is represented by the following Hamiltonian
functional [2, 3]:

H[n(r, t),p(r, t)] = G[n(r, t)] +

∫
(p(r, t)− eA(r, t))2

2m
n(r, t)dr+

+ e

∫
φ(r, t)n(r, t)dr + e

∫
Vback(r)n(r, t)dr. (1)

where p(r, t) = mv(r, t)+eA(r, t), is the canonical momentum of an electron in an electromagnetic
field. The vector potential A(r, t) is associated with the electromagnetic field generated by the
charge fluctuations. The retarded potential φ(r, t) is generated by the electron-electron interaction:

φ(r, t) =
e

4πε0

∫
n(r′, tr)

|r− r′|
dr′,

where tr = t− |r−r
′|

c . The potential Vback(r) is an external confining potential for the electron gas.
The functional G[n(r, t)] is the internal energy of the electron gas, and it is given in general by the
sum of the internal kinetic energy, the exchange energy, and the correlation energy of the electron
system.

Supplementary Note 2

The equations of motion can be obtained by applying the general procedure of the Hamiltonian
formulation of fluid mechanics [4, 5, 6] based on Poisson brackets (The procedure illustrated by
Eguiluz in ref.[2] to calculate the equations of motion assumes that the canonical momentum p(r, t)
is irrotational. The procedure reported here is more general, and it does not need any assumption
on the properties of p(r, t)). Following the argument by Lynch in ref. [4], in the Lagrangian
formulation, the state of a fluid is fully described by the variables

{r(a, t),p(a, t)}, (2)

where a are the Lagrangian coordinates of the fluid elements, r is the position of the fluid element
labeled with a, and p is the conjugate momentum of r. For two given functionals of the Lagrangian
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state of the fluid F [r(a),p(a)] and G[r(a),p(a)], the Poisson bracket reads

{F,G}L =

∫ { δF

δr(a)
· δG

δp(a)
− δF

δr(a)
· δG

δp(a)

}
da. (3)

In the Eulerian formulation, the state of the fluid is described by the Eulerian non-canonical
variables (Temperature effects are not considered here, because the temperature of the system is
fixed, T = 0 K. The processes studied here are isentropic).

{n(r, t),p(r, t)}. (4)

By applying the transformation from Lagrangian to Eulerian coordinates of the flow, it can be
shown that, given two functionals F (n,p) and G(n,p) of the Eulerian state variables (4), the
Poisson bracket (3) becomes [5, 7]

{F,G}E = −
∫ {[δF

δn
∇ · δG

δp
+
δF

δp
· ∇δG

δn

]
+
[∇× p

n
·
(δG
δp
× δF

δp

)]}
dr, (5)

that is called hydrodynamic bracket [5, 7], and it provides a Hamiltonian formulation in terms of
the Eulerian variables (4).

The time evolution of the functional (observable) F (p, n) of a system described by the Hamil-
tonian functional H, can be calculated by means of the Poisson bracket (5)

∂F

∂t
= {F,H}, (6)

where H is the Hamiltonian (1). According to this approach, the evolution of the state variables
of the system can be obtained by

∂p

∂t
= {p, H}, (7)

∂n

∂t
= {n,H}. (8)

For the electronic fluid described by the Hamiltonian (1), the time evolution of the state vari-
ables gives the equations of motion (see Supplementary Note 8)

mn
(∂v
∂t

+ v · ∇v
)

= −n∇δG
δn

+ ne(E + v ×B) , (9)

∂n

∂t
= −∇ · (nv), (10)

where E ≡ −∇φ− ∂A
∂t and B ≡ ∇×A are the fields generated by the electron-density variations.

Equation (9) is the Euler equation for the velocity field, and it is a force balance, where mn
(
∂v
∂t +

v · ∇v
)

on the left-hand side represents the total force acting on the fluid element. The term

−n∇ δG
δn represents a generalization of the conventional density-dependent pressure employed in

fluid mechanics. Equation (10) is the continuity condition for the electron fluid.

Supplementary Note 3

The solution of the system of equations (9-10) can be approximated by means of perturbation
theory. To this extent, the quantities in equation (9) and (10) can be expanded to first order as

n(r, t) = n0(r) + n1(r, t)(δG
δn

)
=
(δG
δn

)
0

+
(δG
δn

)
1

v(r, t) = v1(r, t)

E(r, t) = E0(r) + E1(r, t)

B(r, t) = B1(r, t),

(11)
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where the static density n0(r) is the equilibrium solution at t = 0, when no perturbation is present.
The equilibrium velocity is v0 = 0, because no charges move at equilibrium. This also implies that
the zero-order magnetic field B0 is identically zero.

The equilibrium condition is obtained when all the forces on the fluid element are in balance.
This condition can be expressed by means of equation (9), that reads [in the following we will for
simplicity suppress both the (r, t) and (r) dependence]

−∇
(δG
δn

)
0

+ eE0 − e∇Vback = 0, (12)

where E0 is the electrostatic field generated by the charge density n0(r), that can be written as

E0 = −∇φ0,

where the static potential is given by

φ0 =
e

4πε0

∫
n0(r′)

|r− r′|
dr′.

This φ0(r) satisfies the Poisson equation

∇2φ0 = −en0
ε0

. (13)

It is important to notice that equation (12) can be written as

∇
[(δG
δn

)
0

+ eφ0 + eVback

]
= 0 ∀r, (14)

because this means that the function in parentheses [·] is constant:(δG
δn

)
0

+ e(φ0 + Vback) = µ (15)

where µ is constant. It can be shown that µ is the chemical potential of the electron system [8, 9].
The solution of equation (15) is the equilibrium electron density n0. By inserting the expan-

sions (11) into equation (9), one obtains the Euler equation for the first-order quantities,

m
∂v1

∂t
= −∇

(δG
δn

)
0

+ eE0 − e∇Vback −∇
(δG
δn

)
1

+ eE1.

By recalling the equilibrium condition (12), this equation becomes

m
∂v1

∂t
= −∇

(δG
δn

)
1

+ eE1. (16)

Analogously, the continuity equation (10) for the first-order quantities becomes

∇ · (n0v1) = −∂n1
∂t

. (17)

At this point, it is convenient to introduce the electric-charge density ρ1, and the electric-current
density J1 as

ρ1 = en1, J1 = en0v1 ≡ ρ0v1,

in terms of which equation (16) can be rewritten as

∂J1

∂t
= −ρ0

m
∇
(δG
δn

)
1

+ ω2
pε0E1 , (18)

where ω2
p = e2n0

mε0
is the spatially dependent plasma frequency of the electron gas. Also in terms of

the new variables, equation (17) becomes

∇ · J1 = −∂ρ1
∂t

. (19)
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The electric field E1 satisfies Maxwell’s wave equation:

∇×∇×E1 +
1

c2
∂2E1

∂t2
= −µ0

∂J1

∂t
. (20)

The system of equations (18-19-20) allows one to solve for the first-order fields in our self-consistent
hydrodynamic theory.

Supplementary Note 4

The SC-HDM implementation in COMSOL consists of two steps: the first step is the calculation of
the equilibrium electron density, while the second step deals with the calculation of the first-order
quantities.

The equilibrium electron density n0 is a solution of the equation system (13-15), for the two
unknown variables (n0, φ0). This system can be rewritten in terms of the single variable n0, if we
increase the differentiation order. In order to do that, we apply the ∇· operator to both sides of
equation (14)

∇2
(δG
δn

)
0

+ e∇2φ0 + e∇2Vback = 0. (21)

The potential Vback is generated by a uniform jellium background with density n+, thus we can
write

∇2Vback =
en+

ε0
. (22)

At this point we can insert both equation (13) and equation (22) into equation (21), and obtain

∇2
(δG
δn

)
0
− e2

ε0
n0 +

e2

ε0
n+ = 0 , (23)

that is the equilibrium equation implemented in COMSOL.
The equations (18, 19, 20) can be rewritten in the frequency domain in terms of only one

unknown quantity, the density ρ1. Before doing that, we add a damping term to equation (18),
with damping constant γ, that takes into account the electron-phonon interaction, dissipation due
to the electron-hole continuum, impurity scattering, etc.:

∂J1

∂t
= −ρ0

m
∇
(δG
δn

)
1

+ ω2
pε0E1 − γJ1 (24)

This equation can be written in the frequency domain as

J1 =
1

γ − iω

[
− ρ0
m
∇
(δG
δn

)
1

+ ω2
pε0E1

]
. (25)

Likewise, equation (19) can be written in the frequency domain as

∇ · J1 = iωρ1. (26)

At this point we can rewrite equation (25) by using the Gauss theorem for the electric field in the
presence of a screening permittivity εr(ω) (as in the case in Ag due to of interband effects),

∇ ·E1 =
ρ1

ε0εr(ω)
. (27)

If we apply the ∇· operator to equation (25) and use equation (27), we obtain:

iωρ1 =
1

γ − iω

[
−∇ · ρ0

m
∇
(δG
δn

)
1

+ ε0E1 · ∇ω2
p + ω2

p

ρ1
εr(ω)

]
, (28)
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where we used the vector identity ∇ · (aB) = B · ∇a+ a∇ ·B. The Maxwell wave equation to be
coupled with (28) is

∇×∇×E1 = k20εr(ω)E1 +
iωµ0

γ − iω

[
− ρ0
m
∇
(δG
δn

)
1

+ ω2
pε0E1

]
. (29)

Equations (28 - 29) can readily be implemented in COMSOL, and they allow to solve for just
one hydrodynamic quantity, ρ1, instead of three quantities, the components of J1. This makes the
COMSOL implementation more efficient.

Supplementary Note 5

In this section we will briefly discuss the computational efficiency of our COMSOL implementation
of the SC-HDM, when applied to the cases examined in the main text. The 2D results presented
in the main text are obtained on a personal computer with eight Intel 3.5Ghz processors and 32Gb
of RAM. The only exceptions are the calculations of the resonance frequencies for the Bennett
multipolar plasmon for R > 10 nm (Fig. 4 in the main text), that were calculated on a computer
cluster equipped with nodes that can allocate up to 70GB of RAM. For the 3D calculations, we
used the IC2 computer cluster facility at the Karlsruhe Institute of Technology, that allows to run
simulations that require up to 512 GB of RAM on nodes equipped with four Octa-core Intel Xeon
processors.

The first step of the SC-HDM is the calculation of the equilibrium density n0 by means of the
nonlinear equation (23). A high number of mesh elements (NME) is needed in order describe the
density variations on the metal surface. In the case of a R = 2 nm nanowire, the NME is about
3 ·105, and the computational time (CT) is about 12 minutes. For a R = 20 nm nanorod, the NME
is about 4 · 105 and the CT is about 20 minutes. These data hold for both Na and Ag nanowires.
For the 3D nanospheres of R = 1.5 nm, the NME is about 2 ·105 for the Na nanosphere, and 3 ·105

for the Ag nanosphere. A higher number of mesh elements is required for Ag, since the spillout
layer extends on a smaller region compared to the Na case. The CT is about 6 hours for the Na
nanosphere and 10 hours for the Ag one.

For the excited state calculation in 2D, the quantities (E1x, E1y, ρ1) must be evaluated by means
of the linear equation system (28 - 29), which requires a lower NME in order to reach convergence.
We performed a convergence study for the observable σabs at the dipolar SPR as a function of
the NME for both Na and Ag nanowires (Supplementary Figure 1). The relative error is given by
δ = |σmesh

abs − σ
reg
abs|/σ

reg
abs, where σmesh

abs is the value of σabs at fixed NME and σreg
abs is the value in the

convergence regime.
The case of the Na nanowires with radii R = 2 nm and R = 20 nm is presented in Supplementary

Figure 1a). For R = 2 nm the convergence is obtained for NME ' 6 · 104 elements, with a relative
error δ < 0.07% of the SPR frequency ~ωres = 4.017 eV. For R = 20 nm the convergence is reached
for NME ' 18 · 104, with relative error δ < 0.02% of the SPR frequency ~ωres = 3.9539 eV. The
CT is about 1.5 minutes in the first case, and about 4 minutes in the second case.

The results of the convergence studies for the Ag nanowires with R = 2 nm and R = 20 nm are
presented in Supplementary Figure 1b). For R = 2 nm the convergence is reached for NME ' 8·104

elements, with δ < 0.05% of the SPR frequency ~ωres = 3.653 eV. For a R = 20 nm the convergence
is obtained for NME ' 19 · 104, with δ < 0.02% of the SPR frequency value ~ωres = 3.564 eV. The
CT is comparable to the respective cases for Na nanowires.

The calculation of the resonance frequency for the “Bennett” multipolar resonances requires
a higher NME respect to the dipolar SPR case. This is due to the fact that the charges have a
“double layer” distribution about the surface edge, as we discussed in the main text. The NME
is bigger than 35 · 104 for nanowires of radii R > 10 nm, that is the maximum NME that our PC
could handle.

Finally, for the excited-state calculation in 3D, the quantities (E1x, E1y, E1z, ρ1) must be eval-
uated, but in this case we used the same NME employed for the n0 calculation. The CT for each
frequency for the Na nanosphere is about 1.5 hours, while it is about 2 hours for the Ag nanosphere.
The RAM occupation is about 180 GB in the first case, while it is about 230 GB in the second
case. Some strategies could be put in place in order to lower the computational complexity, but
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no performance optimization study has been conducted at this stage of the 3D SC-HDM code
development.

Supplementary Note 6

As we stated in the main text, we implemented our SC-HDM in COMSOL for practical reasons,
since it offers a quite flexible implementation of the finite-element method and it is one of the in-
creasingly used commercial codes in the field of plasmonics. However, other computational schemes
can be adopted, and ad-hoc solvers could be developed. These solvers could be based, for example,
on other discretization techniques, such as the finite-volume method (FVM), that is widely em-
ployed in fluid dynamics. This could be done by extending some of the routines of the well-known
OpenFOAM computational toolbox, which is based on the FVM method. Another interesting
alternative would be the discontinuous Galerkin method that combines appealing features of the
FEM and the FVM. Finally, an ad-hoc computationally code could be advantageous, since COM-
SOL is a proprietary software, and it does not allow modifying and adapting the computational
routines to the specific electrodynamics equations.

Supplementary Note 7

In this section we will benchmark the results obtained with the SC-HDM against those obtained
with ab-initio methods. We start from the 2D case by comparing the absorption spectrum for a Na
nanowire with radius R = 2 nm obtained by means of the SC-HDM with the one calculated with
the TD-DFT Octopus package in ref 10. Both results are presented in Supplementary Figure 2. It
can be observed that the dipolar SPR peak for the TD-DFT case occurs at ~ωres = 4.09 eV, while
it occurs at ~ωres = 4.017 eV in the SC-HDM. The Bennett resonance is observed both in the SC-
HDM and TD-DFT model, but it appears at ~ωres = 4.918 eV and ~ωres = 4.60 eV respectively.
The linewidth obtained with the SC-HDM is narrower than for the TD-DFT calculations, one
reason being (as discussed in the main text) the neglect of Landau damping in the SC-HDM.
Apart from this, it is important to point out that both methods rely on different approximations,
therefore a perfect agreement is neither reachable nor expected.

For the 3D calculations, we benchmarked our SC-HDM results for the sphere of radius R =
1.5 nm against those obtained by Li et et al. in ref 11 by means of the Time-Dependent Local
Density Approximation (TD-LDA). A direct comparison is not possible in this case, since Li et al.
study the optical response of Na atomic clusters without employing the jellium model. The biggest
cluster considered in their analysis is Na331, which has an effective cluster radius RC = 1.439 nm.
The absorption spectra obtained with both methods are shown in Supplementary Figure 3. It is
possible to observe that the SPR dipolar resonance for the TD-LDA case is redshifted with respect
to the one obtained with the SC-HDM. This is due to the fact that the radius of the Na331 cluster
is smaller than the one of the SC-HDM sphere. Moreover, the resonance peaks are broadened
in the TD-LDA case, and the Bennett resonance is strongly damped. This difference with the
SC-HDM method can also be to a large part attributed to the neglection of Landau damping in
our SC-HDM.

Supplementary Note 8

Here we will show how to derive equation (10) and (9) from the equations of motion for the density
and its conjugate momentum, repectively. Both equations of motion are derived using the Poisson
bracket (5), in combination with the Hamiltonian (1). The equation of motion (7) for the conjugate
momentum p reads:

∂pi
∂t

= {pi, H} = −
∫ {[δpi

δn
∇ · δH

δp
+
δpi
δp
· ∇δH

δn

]
+
[∇× p

n
·
(δH
δp
× δpi
δp

)]}
dr′, (30)

where pi indicates the i -th component of the vector p. The functional associated with pi is:

pi(r, t) =

∫
p(r, t) · eiδ(r− r′) dr′, (31)
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where ei is the unit vector of the i -th coordinate axis. The functional derivatives of p are then [4, 5]

δpi
δp

= eiδ(r− r′), (32)

δpi
δn

= 0. (33)

The functional derivatives of the Hamiltonian in equation (30) then become

δH

δn
=

(p− eA)2

2m
+ eφ+

δG

δn
, (34)

δH

δp
= n

(p− eA)

m
, (35)

which inserted into the equation of motion (30) gives

∂pi
∂t

= −
∫ {[

eiδ(r− r′) · ∇
( (p− eA)2

2m
+ eφ+

δG

δn

)]
+

+
[∇× p

n
·
(
n

(p− eA)

m
× eiδ(r− r′)

)]}
dr′.

The spatial integral can be performed and yields

∂pi
∂t

= −ei · ∇
δG

δn
−∇

( (p− eA)2

2m
+ eφ

)
−∇× p ·

( (p− eA)

m
× ei

)
. (36)

The first term in equation (36) can be worked out in Einstein notation as

∇
( (p− eA)2

2m
+ eφ

)
= ∂h

( (pg − eAg)2

2m
+ eφ

)
δhi = mvg∂ivg + e∂iφ. (37)

In the same way, the second term in equation (36) becomes

∇× p ·
( (p− eA)

m
× ei

)
= εlmn∂mpnεlgh

pg − eAg
m

δhi =

= εlmnεlgi∂m(mvn + eAn)vg = εlmnεlgi∂mmvn + εlmnεlgie∂mAnvg. (38)

This long equation can be simplified, using the mathematical identity

εlmnεlgi = [δmgδni − δmiδng],

into the more appealing form

∇× p ·
( (p− eA)

m
× ei

)
= mvg∂gvi −mvg∂ivg − eεiglvgBl, (39)

where we also used the well-known relation between the magnetic field and the vector potential

B = ∇×A = εlmn∂mAn.

By summing equations (37) and (38) we obtain on the right-hand side

. . . = mvg∂gvi + e∂iφ− eεiglvgBl.

Thus, equation (30) can be written as

m
∂vi
∂t

+ e
∂Ai
∂t

= −∂i
(δG
δn

)
−mvg∂gvi − e∂iφ+ eεiglvgBl, (40)

which in vectorial notation reads

m
(∂v
∂t

+ v · ∇v
)

= −∇δG
δn

+ e(E + v ×B).
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Hereby we showed how to obtain equation (9) from the equation of motion for the conjugate
momentum.
In a similar fashion, we will now show how equation (10) can be obtained from the equation of
motion for the density n,

∂n

∂t
= {n,H} = −

∫ {[δn
δn
∇ · δH

δp
+
δn

δp
· ∇δH

δn

]
+
[∇× p

n
·
(δH
δp
× δn

δp

)]}
dr′. (41)

Also in this case, n can be written as

n(r, t) =

∫
n(r, t)δ(r− r′) dr′,

and the functional derivatives in equation (41) become:

δn

δn
= δ(r− r′), (42)

δn

δp
= 0. (43)

By recalling equation (35), the equation of motion (41) turns into

∂n

∂t
= −

∫ {[δn
δn
∇ · δH

δp

]
dr′ = −∇ · (nv),

which is indeed the continuity equation (10).

Supplementary Note 9

In the HW-HDM, the hydrodynamic model that is commonly used in nanoplasmonics, the uniform
background ions with density n+ are screened by an electron distribution of equal density n0(r) =
n+ inside the metal, and n0(r) = 0 in the free-space region that extends outside the metal. We
want to show here that this simple form of n0(r) is a solution of equation (23), when the functional
GTF[n] is given by the Thomas-Fermi functional TTF[n], that is the functional employed in the
HW-HDM. We recall that the functional TTF[n] is given by

TTF[n] = CTFn
5/3
0 (r),

with CTF = 3
10

~2

m (3π2)2/3.
Inside the metal, equation (23) reads

5

3
CTF∇2n

2/3
0 (r)− e2n0(r)

ε0
+ e2

n+

ε0
= 0,

that is satisfied by the constant solution n0(r) = n+.
Outside the metal domain, equation (23) reads

5

3
CTF∇2n

2/3
0 (r)− e2n0(r)

ε0
= 0, (44)

because no ions are present in this region. It is then evident that equation (44) is satisfied by the
vanishing constant density n0(r) = 0.

We have hereby shown that the step-function density distribution n0(r), that is chosen on the
basis of physical arguments, satisfies equation (15), provided that the functional GTF[n] is given
by the Thomas-Fermi functional TTF[n]. For this reason, the HW-HDM complies with the same
self-consistency requirement of Supplementary Note 3 that we also applied to our SC-HDM with
spill-out.
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