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In this supplemental material we offer further details on 1) the derivation of the nonlocal wave
equation, 2) the formulation of boundary conditions associated with the hydrodynamic model, 3)
the derivation of a generalized energy density expression, and 4) the numerical implementation and

its convergence properties.

THE NONLOCAL WAVE EQUATION

In this section of our supplemental material we derive
Eq. (2) in our Letter. We start from the coupled hydro-
dynamic equations, i.e. Eq. (1) in our Letter. Our first
step is to isolate J from Eq. (1a),

J =
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where for generality we have included the ., interband
contribution usually appearing in the Drude permittivity
€p = Eoo — Wi /[w(w +1i/7)]. Substituting this expression
into Eq. (1b) we get

sV [V{V X VX E - (2)’ B}

n {v XV xE— (%)QewE} — iwpooE.  (2)
Next, for any vector field F, the divergence of its curl is
zero, i.e. V-(VxF) = 0. Thus, without loss of generality
the expression now simplifies to
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Furthermore, utilizing that in general V[V -F] = V x
V x F + V2F we get
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Re-grouping the double-curl terms on the left-hand
side (as in the common LRA wave equation) and re-
introducing the local-response Drude permittivity as
Ep = Eco + 10/ (€gw) we get

VxVxE=(2)K e, + 255V B (5)

For the re-normalization on the right-hand side we note
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that K = 027,82500(Cl+i/WT)71 L+ 0(800[6/0}2[1 -

i/wt]™1) and for all practical purposes involving the com-

mon noble metals it is close to unity. In this way we end

up with Eq. (2) in our Letter.

TRANSLATIONALLY INVARIANT SYSTEMS

For infinite systems with translational invariance it is
convenient to work in Fourier space and this has been
the common approach in most of the early literature. To
connect our result in Eq. (5) to k-space formalism we
Fourier transform the wave equation which gives

_kxkxE:(%)2(1—%§)E—(€)2k(k-E), (6)

where for simplicity we have suppressed the interband
contribution and the damping. Below, we will use the
Helmholtz decomposition E = E; + E; and to clearly
distinguish between transverse fields (k - E; = 0) and
longitudinal fields (k x E; = 0) we have above in the
Laplacian term deliberately used the identity given below
Eq. (3).
For longitudinal fields we now get

0= (w®— wi — B%k}) Ey, (7a)

or alternatively, pulling a factor (w? — 82k?) outside the
parenthesis, we get

0=(1- wfﬁ) E. (7b)

Thus, we immediately find that the non-trivial lon-
gitudinal solutions have dispersion relation w(k;) =

\/ Wi+ B2k?, i.e. we exactly recover the classical solu-

tion for longitudinal bulk plasmons commonly derived
from e;(w, ki) = 0 where g;(w, k) = 1 — w2 /(w? — B2k}).
Likewise, for transverse fields we get

BB = (2)' (1- %)E, (8)



so that we arrive at the common transverse dispersion
relation k; = (w/c)y/€et(w) where e;(w) = g;(w, k — 0) =

1—w?/w?

BOUNDARY CONDITIONS

The Eq. (2) in our Letter must be equipped with a
physically appropriate boundary condition, as we dis-
cussed in Ref. [1] and more recently in detail in an ap-
pendix of Ref. [2]. This condition can be easily worked
out from the continuity of the normal component of the
displacement vector D across the boundaries, that reads:

D,,-i=Dy i (9)

where m indicates the metal and d refers to the surround-
ing dielectric material. The displacement vector in the
metal is defined as:

D, = c0cacE + iJ, (10)

where J is the free-electron current density. The displace-
ment vector in the dielectric material reads:

D., = goeq4E, (11)

where €4 is the permittivity of the surrounding material.
Equation (9) can now be rewritten as:

<€0600Em + ZJ) ‘N =¢ggeqEyg -1 (12)
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Next, we impose the boundary condition J - n = 0, dis-
cussed in detail in Refs. [1, 2], which gives

fooEm -n = EdEd - 1. (13)

This equation states that the normal component of the
electric field is continuous across the boundaries only
when interband contributions are neglected and the sur-
rounding material is free space. Eq. (2) in our Letter is
solved subject to this boundary condition. We empha-
size that this is fully consistent with original requirement
that J - i = 0 on the boundary.

GENERALIZED ENERGY DENSITY

In this section of our supplemental material we derive
a generalized expression for the electromagnetic energy
density, including the contributions stored in the hydro-
dynamics of the free-electron gas. We start from the
Poynting theorem in time domain [3]

/ExH~ﬁdS = —/ [eoE-BE+E-P+puH-H| dV (14)
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where P is the polarization vector, V is the volume of
the electron gas, and S is its boundary. The polarization
current J is linked to P by

oP
J=—=P
ot
At the same time, the polarization current is related to
the electric field by means of the hydrodynamic equa-

tion. In time domain, the linearized hydrodynamic Euler
equation for the electron dynamics is

(15)
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where v is the electron velocity, n is the electron den-
sity, ng is the electron density at rest, and m. the elec-
tron mass. If we introduce the polarization current
J = —engv and the charge density p = —en, the Eq. (16)
becomes
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Next, if we use the definition (15), and the continuity

equation p = —V - P, we get
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We can now isolate E in this expression,
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and multiplying by P, we get
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In the spirit of Eq. (14) we now integrate Eq. (20) over
the metallic volume,
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Our next step is to integrate by part,
/VV-P-PdV:—/ V-PV-PdV—i—/VPPﬁdS
1% 1% s

To further proceed, we now apply the physical boundary
condition J- i = 0 [1], i.e. no electrons leaving the metal
volume. This gives
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In this way Eq. (21) now reads
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and substituting into the Poynting theorem, Eq. (14), we
get

/ExH-ﬁdS+/ 72P2dvz—/udv. (23)
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Here, w is the electromagnetic energy density defined as
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Finally, if we recall the continuity equation for the polar-
ization charge density, given by p = —V - P, and we use
Eq. (15), then

u = 1eOE2 + 5 p* + L J? 4 lMOHQ. (25)
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This is our generalization of the common energy-density

to account for the energy stored in the additional degrees

of freedom associated with the nonlocal hydrodynamics

of the electron gas. For time harmonic fields, this expres-

sion can easily be time-averaged.

In our Letter, we focus on electrical dipole emitters
where the H contribution can be neglected. For our ac-
curate numerical evaluation we rely on Egs. (1) in our
Letter, i.e. an eigenvalue-problem with a six-element
eigenvector {E, J}, rather than Eqgs. (2) where one would
in a subsequent (and less accurate) step have to numer-
ically derive J from the obtained 3-element eigenvector

{E}.

NUMERICAL IMPLEMENTATION AND
CONVERGENCE

In this section of our supplemental material we offer
some details on the numerical implementation and the
convergence tests for the waveguides that we have ana-
lyzed in our Letter. For scattering problems involving ar-
bitrarily shaped metal geometries, Eq. (1) can be solved
numerically with the aid of finite-element methods [4]. In
particular, the hydrodynamic model can conveniently be
integrated into commercially available software such as
Comsol Multiphysics. For the scattering problem we have
already made such an add-on to Comsol Multiphysics
freely available [5]. Here, we extend this approach to
an eigenvalue problem appropriate for waveguiding prob-
lems. Our code for solving Eq. (2) in our Letter is an
add-on to Comsol Multiphysics 4.1, employing the PDE
Weak form module and the standard MUMPS eigenvalue
solver.

For our discussion of the numerical convergence we first
note that in Fig. 2 of our Letter, the agreement between
the analytical and numerical solutions is very good. More
quantitatively, the relative error of the numerically cal-
culated propagation constant k, with respect to the an-
alytical value is always smaller than 0.3% in the entire

frequency range of Fig. 2. Likewise, the relative error for
the effective mode area A, is always smaller than 0.12%
within the same frequency range.

The convergence analysis for the circular nanowire
waveguides is based on the methodology that we have de-
scribed in previous work for the scattering problem [4].
In the present case we have two observables, i.e. the
propagation constant k, and the effective mode area A.-.
Thus, we define the relative errors J;"" and ¢’;' accord-
ing to the definition 02" = |Z e — Treg| /Trex Where 00,
is the observable value at fixed mesh edge number and
T.p 15 the value in the convergence regime. To illus-
trate the convergence performance we consider a rela-
tively high frequency w = 0.6w,,, because in this case the
field is mainly localized in the metal. This represents
a “worst-case” condition for the calculations because a
high number of edge elements is needed. The results are
shown in Fig. S1 for a varying number n of triangular
elements while we for late convenience introduce 7 as
the normalized number of triangular elements. It is im-
portant to underline that the propagation constant k, is
calculated by means of the Eq. (2) in our Letter, while
the mode area is calculated with Eq. (1) of our Letter,
i.e. providing us with both the electrical field and the
current density. As clearly seen, both codes show a con-
vergence of the calculated parameters for n > 250. The
corresponding simulation time is about 5min for both
codes. The faster convergence of Eq. (2) over Eq. (1) is
also noted when comparing panels (a) and (b).

The convergence test for the V-groove is performed
for the case A\ = 600 nm, because it corresponds to the
maximum field localization in the visible spectrum, and
a high mesh density is needed. The observables are the
effective refractive index n.; and the propagation length
L. As seen in Fig. S2, both relative errors 6™ and ™
converge for 7 > 200, and the simulation time is about
10 min. These dispersion results were calculated from
Eq. (2) in our Letter.

The convergence test for the A-wedge structure follows
the same lines. Also in this case, we show the test per-
formed at A = 600nm, that corresponds to the highest
field confinement in the metal. The results are shown in
Fig. S3 and we notice that the propagation length con-
verges at higher 1 with respect to the effective refractive
index. The A-wedge presents high losses at this wave-
length, and the simulations can be very sensitive on the
mesh density. The results are obtained from Eq. (2) in
our Letter, and the typical computation time is about
10 min.

Finally, we consider the convergence of the effective
mode area for both V-groove and A-wedge. The results
are shown in Fig. S4. Note that the mesh densities in the
two cases are relative to different geometrical entities, so
they cannot be compared directly. The results for the
mode area are calculated with Eq. (1) of our Letter, i.e.
providing us with both the electrical field and the current



density. The simulation time is about 10 min also in this
case.
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FIG. 1: Convergence test for a cylindrical nanowire with radius R = 2 nm. Panel a) Relative error §j

Number of edge elements

num

of the propagation

constant k. versus number of edge elements for cylindrical nanowires. The convergence occurs for n > 200. Panel b) Relative
error 03" of the effective mode area A.;; versus number of edge elements for cylindrical nanowires. The convergence occurs
for n > 250. The scale bar is 1 nm long. The inset refers to n = 250.
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FIG. 2: Convergence test for a V-groove structure with aperture angle 6 = 30°. The radius of the meshing circle Ryesn = 10 nm,
and it is kept constant while varying the number of triangular elements. Panel a) Relative error 0,,"™ of the effective refractive
index versus the normalized number of triangular elements 7. The convergence occurs for 77 > 200, that corresponds to 6283
elements. Panel b) Relative error 3"™ of the propagation length L versus 7. The convergence occurs for 7 > 200. The scale
bar is 10 nm long. The inset refers to 77 = 200, and the shaded blue area indicates the metal.
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FIG. 3: Convergence test for a A-wedge structure with aperture angle # = 30°. The radius of the meshing circle R = 1 nm,
and it varies, while the number of triangular elements is kept constant. Panel a) Relative error §,*" of the effective refractive
index versus the normalized number of triangular elements 7. The convergence occurs for 77 > 30, that corresponds to n > 94
elements. Panel b) Relative error 03"* of the propagation length L versus 7. The convergence occurs for 7 > 45, i.e. n > 141.
The scale bar is 1 nm long. The inset refers to 7 = 141, and the shaded blue area indicates the metal.
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FIG. 4: Convergence test for the effective mode area for V-groove and A-wedge waveguides. Panel a) Relative error 63" of the
effective mode area A.y; versus number of edge element for the V-groove. The convergence occurs for 77 > 400, i.e. n > 12566.

Panel b) Relative error 4" of the effective mode area A.; versus number of edge elements for the A-wedge waveguide. The
convergence occurs for 77 > 60, i.e. n > 188.



