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Abstract: We study the blueshift of the surface plasmon (SP) resonance
energy of isolated Ag nanoparticles with decreasing particle diameter, which
we recently measured using electron energy loss spectroscopy (EELS) [1].
As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift
of 0.5 eV of the SP resonance energy is observed. In this paper, we base
our theoretical interpretation of our experimental findings on the nonlocal
hydrodynamic model, and compare the effect of the substrate on the SP
resonance energy to the approach of an effective homogeneous background
permittivity. We derive the nonlocal polarizability of a small metal sphere
embedded in a homogeneous dielectric environment, leading to the nonlocal
generalization of the classical Clausius–Mossotti factor. We also present an
exact formalism based on multipole expansions and scattering matrices to
determine the optical response of a metal sphere on a dielectric substrate
of finite thickness, taking into account retardation and nonlocal effects. We
find that the substrate-based calculations show a similar-sized blueshift as
calculations based on a sphere in a homogeneous environment, and that
they both agree qualitatively with the EELS measurements.

© 2013 Optical Society of America

OCIS codes: (240.6680) Surface plasmons; (250.5403) Plasmonics; (160.4236) Nanomateri-
als; (000.1600) Classical and quantum physics; (260.3910) Metal optics.

References and links
1. S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A.

Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanopho-
tonics 2, 131–138 (2013).
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35. F. Bloch, “Bremsvermögen von Atomen mit mehreren Elektronen,” Z. Phys. A 81, 363–376 (1933).
36. S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic struc-

tures due to nonlocal response,” Phys. Rev. B 84, 121412(R) (2011).
37. G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A.

Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2,
161–166 (2013).

38. F. Sauter, “Der Einfluß von Plasmawellen auf das Reflexionsvermögen von Metallen (I),” Z. Physik 203, 488–494
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1. Introduction

The use of metal nanoparticles to create astonishing colors in stained glass dates back to ancient
Roman times. However, the mechanism behind the color generation was not fully understood
until Mie in 1908 rigorously and exactly solved Maxwell’s electrodynamical equations for the
problem of plane wave scattering off a sphere [2]. From Mie’s solution it follows that resonant
modes of the metal sphere, which we now refer to as localized SPs [3], give rise to large ab-
sorption cross sections at specific wavelengths, resulting in the colorful stained glass. In Mie’s
treatment of the problem it is assumed that the material properties of the sphere can be described
by a single frequency-dependent function, the local-response dielectric function ε(ω). While
in most cases a classical treatment based on the dielectric function is justified, important ef-
fects due to surface structure [4–8], nonlocal response [9–16] and quantum size effects [17–20]
manifest themselves in the response of metal nanoparticles, when the particle sizes are below
∼ 10 nm. Many experiments on tiny nanoparticles using both optical measurements [21–25]
and electron energy-loss studies [1, 26, 27] have shown that the classical approach is insuffi-
cient to describe the experimental observations. The interpretation of these results has been
based on semi-classical models, such as the nonlocal hydrodynamic [28] and semi-classical in-
finite barrier (SCIB) [29] approaches, or more complicated quantum calculations using density
functional theory [4].

Recently, we performed EELS on chemically synthesized Ag nanoparticles with diameters
ranging from 3.5 to 26 nm [1]. We observed a large blueshift of the localized SP resonance en-
ergy from 3.2 eV to 3.7 eV, when the particle size decreased. We interpreted these non-classical
observations using two different semi-classical models, the hydrodynamic model and the model
presented by Keller et al. [20], which both only qualitatively could explain the observations. In
this paper, we focus on the hydrodynamic model and derive the nonlocal polarizability of a
hydrodynamic sphere in a homogeneous environment, which leads to the nonlocal generaliza-
tion of the Clausius–Mossotti factor. We also study the effect of the substrate on the resonance
energy of the nanoparticle. Specifically, we develop an exact formalism to calculate the opti-
cal response of a metal sphere on a dielectric substrate of finite thickness, taking into account
both retardation and nonlocal response. The theoretical calculations are compared to the EELS
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. (a) Schematic image of the Ag nanoparticles deposited on 10 nm thick Si3N4 sub-
strate. (b) Bright-field TEM image of sample. (c-f) Bright-field TEM images of single
nanoparticles with diameters 3, 6, 10 and 13 nm, respectively. All scale bars are 10 nm
long.

measurements.

2. Experiment: electron energy loss spectroscopy

The silver nanoparticles are chemically synthesized [30] and afterwards stabilized in an aque-
ous solution with borohydride ions to prevent aggregation. Subsequently, the solution with
nanoparticles is deposited on a plasma-cleaned 10 nm thick Si3N4 TEM membrane purchased
from TEMwindows.com. The mean particle diameter is 12 nm with a broad size distribution
from 2 nm up to 30 nm, see Fig. 1, which gives us the advantage of being able to perform all of
the measurements on the same sample.

The EELS measurements are performed with a FEI Titan transmission electron microscope
(TEM) equipped with a monochromator and a probe aberration corrector. The microscope is
operated in scanning TEM (STEM) mode at an acceleration voltage of 120 kV, providing a
probe diameter of 0.5 nm and a zero-loss peak width of 0.15±0.05 eV. In a spherical particle
only the amplitude of the SP, and not the resonance energy, is dependent on the position of
the electron beam [31]. We therefore acquire the EELS spectra by directing the electron probe
close to the surface of the silver nanoparticle (aloof trajectory), thereby enhancing the excitation
of the SP. Details on the data analysis and further experimental information can be found in
Ref. [1].

3. Theory: hydrodynamic model

In the following theoretical approaches we will assume that the shape of the nanoparticles can
be approximated to be spherical. Details and discussion about this approximation can be found
in Ref. [1]. Here, we note from the TEM images in Figs. 1(b)-(f) that the overall shape of the
nanoparticles is spherical, especially for particle sizes below 10 nm in diameter, which justifies
our approximation. Furthermore, large shape deviations from a sphere, such as hemispherical
or disk-shaped particles, would also manifest themselves in the EELS spectra in terms of new
resonances or electron beam position-dependent resonances [32], which we do not observe.
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We base the interpretation of our experimental results on the hydrodynamic model. We first
derive the exact nonlocal polarizability of a metal sphere embedded in a homogeneous material,
thereby generalizing the well-known Clausius–Mossotti factor to nonlocal response. The free
electrons of the sphere are described by the semiclassical hydrodynamic model, which takes
into account nonlocal response but neglects the spill-out of the electrons outside the spheres
due to the finiteness of their confining potential. Secondly, the effect of the substrate is taken
into account. Here, we present an exact formalism to calculate the retarded optical response of
a sphere with hydrodynamic nonlocal response, on a dielectric substrate of finite thickness.

The starting point of the hydrodynamic model is Maxwell’s equations in terms of the free-
electron density n and free-electron current J [28, 33, 34]

∇ ·D =−en, (1a)

∇ ·H = 0, (1b)

∇×E = iωμ0H, (1c)

∇×H =−iωD+J, (1d)

where the constitutive relation B = μ0H for non-magnetic materials has been utilized. Here,
we introduce the polarization effects due to the bound charges through the constitutive relation
for the displacement field D = ε0ε∞E, where ε∞ in general is frequency-dependent and takes
into account those polarization effects that are not due to the free electrons, such as interband
transitions. The continuity equation, which connects the free-electron density and the free-
electron current, follows directly from Eqs. (1a) and (1d),

∇ ·J =−iωen. (2)

To complete the description of the electromagnetic response of the metal, a relation which
connects the free-electron current to the electric field is needed. To this end, we consider the
linearized nonlocal hydrodynamic equation [28, 35], which in its real-space formulation be-
comes [15, 36, 37]

β 2

ω(ω + iγ)
∇(∇ ·J)+J = ε0σE, (3)

where σ = iω2
P /(ω + iγ) is the classical Drude conductivity, and β 2 = 3/5v2

F with vF being the
Fermi velocity. Within a hydrodynamic description the pressure of the electron gas is included,
which gives rise to the presence of compression (longitudinal) waves and leads to spatial disper-
sion that is observable in truly nanoplasmonic systems. Equations (1)-(3) constitute the basic set
of equations within the retarded hydrodynamic approach. At an interface between two materi-
als, these equations are supplemented by boundary conditions (BCs). In this study we consider
only metal-dielectric interfaces, where Maxwell’s BCs must be augmented by a single addi-
tional boundary condition (ABC) which states that the normal component of the free-electron
current density must vanish [33, 36, 38–40]. The ABC can be derived as a consequence of ne-
glecting the spill-out of electrons.

3.1. Hydrodynamic sphere in homogeneous environment: nonlocal Clausius–Mossotti factor

We consider a small isotropic metal sphere of radius R embedded in a homogeneous dielectric
environment with permittivity εB. The polarizability α of this sphere is a well-known result in
classical optics [3, 41] and is given by

α = 4πR3 εD − εB

εD +2εB

, (4)
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where εD = ε∞−ω2
P /(ω2+ iγω) is the classical Drude permittivity. The factor (εD −εB)/(εD +

2εB) is called the Clausius–Mossotti factor and notice that it is independent of the sphere radius.
The polarizability is derived in the quasistatic approximation under the assumption of a static
surrounding electric field, thus neglecting spatial variations in the exciting electric field. Our
goal is now to derive a generalization to this formula, taking hydrodynamic nonlocal response
of the sphere into account. We begin by introducing the electric and current scalar potentials φ
and ψ , respectively, defined as

E =−∇φ , J =−∇ψ. (5)

By inserting Eq. (5) into the hydrodynamic Eqs. (1)-(3), it can straightforwardly be shown that
the scalar potentials inside the metal sphere are governed by the equations [42]

(
∇2 + k2

NL

)
n = 0, (6a)

∇2φ = e
ε0ε∞

n, (6b)

ψ = 1
iω−γ

(
ε0ω2

P φ − eβ 2n
)
, (6c)

where the nonlocal longitudinal wave vector is given as k2
NL = (ω2 + iωγ −ω2

P /ε∞)/β 2. In
the surrounding dielectric, the current density J and electron density n vanish, and the electric
scalar potential must instead satisfy the usual Laplace equation ∇2φ = 0. Finally, Maxwell’s
BCs and the hydrodynamic ABC for the scalar potentials translate into

φ in = φ out, ε∞
∂φ in

∂ r
= εB

∂φ out

∂ r
,

∂ψ in

∂ r
= 0, (7)

where in and out refers to inside and outside the metal, respectively. The general solutions to
the electric scalar potential and free-electron density inside and outside the sphere are

nin = ∑
l,m

Al jl(kNLr)Ylm(θ ,φ), nout = 0, (8a)

φ in = ∑
l,m

[
Dlr

l −Al
e

ε0ε∞k2
NL

jl(kNLr)
]

Ylm(θ ,φ), (8b)

φ out = ∑
l,m

[
Blr

l +Clr
−(l+1)

]
Ylm(θ ,φ). (8c)

Here, jl and Ylm are the spherical Bessel function of the first kind and the spherical harmon-
ics, respectively. The current scalar potential ψ can be determined from Eq. (6c). We neglect
variations in the exciting electric field and assume a constant electric field surrounding the
sphere, here directed in the ẑ direction i.e. Eout = E0ẑ. Thus, this poses the requirement that
limr→∞ φ out = −E0z = −E0r cos(θ), which excludes all orders of (l,m) in the sums in Eq. (8)
except (l,m) = (1,0). Applying the BCs from Eq. (7) and following the usual approach to
introducing the polarizability [3], we determine the nonlocal polarizability αNL to be

αNL = 4πR3 εD − εB (1+δNL)

εD +2εB (1+δNL)
, δNL =

εD − ε∞

ε∞

j1(kNLR)
kNLR j′1(kNLR)

, (9)

where the prime denotes differentiation with respect to the argument. We see that nonlocal
effects enter the Clausius–Mossotti factor as an elegant and simple rescaling of either the
metal permittivity from εD to ε̃D = εD (1+δNL)

−1 or of the background permittivity from εB

to ε̃B = εB(1+δNL). Both approaches are equally valid, but we choose to examine the rescaled
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Im
[ε̃
B
(ω

,R
)]
/

ε B

ω/ωP
R
e[

ε̃ B
(ω

,R
)]
/

ε B
ω/ωP

2R
[n
m
]

ω/ωP
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Fig. 2. (a) Extinction cross section based on the nonlocal Clausius–Mossotti factor, Eq. (9),
as a function of diameter 2R and normalized frequency ω/ωP. The real and imaginary
parts of the normalized rescaled background permittivity ε̃B/εB as a function of normalized
frequency are shown in (b) and (c), respectively, for three different sphere radii: 2 nm
(red), 4 nm (green) and 8 nm (blue). Free-electron gas parameters used for the calculations:
γ/ωP = 0.05, β/c = 5×10−3, ε∞ = 1 and εB = 1.

background permittivity since the nonlocal blueshift of the SP resonance, which is discussed in
the following, can be more easily understood in terms of a change in the background permittiv-
ity, and this approach also follows the line of reasoning in the recent work of Ref. [43]. We point
out that the rescaled background permittivity ε̃B is now both frequency- and size-dependent. Fi-
nally, we note that when β → 0 then δNL → 0 in Eq. (9) and the classical size-independent
Clausius–Mossotti factor is retrieved.

With the nonlocal polarizability we can determine the extinction cross section σext of a metal
sphere using the relation [3]

σext =
1

πR2

[
(ω/c)4

6π
|αNL|2 +(ω/c)Im(αNL)

]
. (10)

In Fig. 2(a) we show the extinction cross section as a function of diameter and frequency for
a model sphere in vacuum and with only a free-electron response. The blueshift of the SP res-
onance energy for decreasing particle diameter, which is known to be present from generalized
nonlocal Mie theory [9], is captured accurately by the simple nonlocal Clausius–Mossotti fac-
tor in Eq. (9). Furthermore, we see that as the particle diameter increases the resonance energy
approaches the well-known classical limit ω/ωP = 1/

√
3 ≈ 0.577. For the smallest diameters

(2R < 5 nm) a series of strongly size-dependent resonances above the plasma frequency can
be distinguished. These are resonant pressure-type (longitudinal) waves that arise due to the
confinement of the free electron gas. Comparison with the generalized Mie theory [9] (not dis-
played) shows that the spectral location and spectral width of the pressure resonances predicted
by the nonlocal Clausius–Mossotti factor are exact.

Using the nonlocal Clausius–Mossotti factor we can deduce a simple approximate, but ac-
curate relation which determines the resonance frequencies of the pressure modes. The poles
of the nonlocal correction δNL in Eq. (9) determine the spectral position of the pressure modes,
which provides us with the condition j′1(kNLR) = 0. We rewrite this condition in terms of the
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standard Bessel functions and use the large-argument asymptotic form of the Bessel function
Jl(x)�

√
2/(πz)cos(z− lπ/2−π/4), since the product kNLR ≥ 1 due to the high frequencies

(ω > ωP) at which these resonances occur. After some straightforward algebraic manipulations
we find (for negligible damping) the relation

ω2 � ω2
P

ε∞
+

β 2π2

R2 n2, (11)

where formally n = 1,2,3, ... However, upon comparison with extinction cross section calcu-
lations we find that the mode n = 1 is optically dark and therefore does not show up in the
extinction spectrum [44].

Figures 2(b) and 2(c) display the frequency dependency of the real and imaginary parts of
the rescaled background permittivity ε̃B(ω,R), respectively, for three different radii. In Fig. 2(b)
we see that below the plasma frequency Re(ε̃B)/εB decreases from unity with decreasing radii,
leading to the size-dependent blueshift observed in the extinction cross section. In the same
frequency interval, we see from Fig. 2(c) that Im(ε̃B)/εB does not vary significantly and is
close to zero. Above the plasma frequency both Re(ε̃B)/εB and Im(ε̃B)/εB display periodic
variations, which give rise to the pressure resonances in the extinction cross section. Finally, as
the radius increases the frequency dependence of both Re(ε̃B)/εB and Im(ε̃B)/εB weakens, and
the classical limits Re(ε̃B)/εB → 1 and Im(ε̃B)/εB → 0 are approached.

The above derivation of the nonlocal polarizability αNL of a metal sphere in a homogeneous
dielectric environment is expected to describe many experimental situations of spheres in glass
or gels [22, 23, 45]. It can also be used, although its accuracy remains to be tested, in case an
inhomogeneous environment is described with an effective homogeneous background dielectric
function, see Sec. 4.

3.2. Hydrodynamic sphere on substrate of finite thickness

We consider next the case of a metal sphere situated on a substrate, as in the experiment, so
we drop the assumption that the background is homogeneous. We present here an exact method
based on scattering matrices and multipole expansions to calculate the extinction cross section
of the sphere-substrate system, when impinged by a plane wave [46]. The dielectric constant
and the thickness of the substrate are denoted εS and t, respectively.

The system in study consists of a metal sphere in contact with a dielectric substrate, where
the origin of the coordinate system is located at the contact point and the z-axis is taken nor-
mal to the substrate. The incident plane wave and scattered wave are expanded in spherical
waves [47] with aσ

lm and bσ
lm denoting the expansion coefficients of the incident and scattered

waves, respectively. Here, σ = 1,2 represent TE and TM polarizations, respectively.
In the absence of the substrate, the incident and scattered spherical wave amplitudes are

related through Mie’s scattering matrix for the metal sphere as bσ ′
l′m′ = Tlmσ

l′m′σ ′aσ
lm, where

Tlmσ
l′m′σ ′ = t(σ)

l δll′δmm′δσσ ′ , (12)

is Mie’s scattering matrix, which takes retardation effects into account, and δii′ is the Kronecker
delta.

Here, the coefficients t(σ)
l are the nonlocal Mie scattering coefficients given as [9, 14]

t(1)l =− jl(xD) j′l(xB)− jl(xB) j′l(xD)

jl(xD)h
(1)′
l (xB)−h(1)l (xB) j′l(xD)

, (13a)

t(2)l =−
[
cl + j′l(xD)

]
εB jl(xB)− εD jl(xD) j′l(xB)

[
cl + j′l(xD)

]
εBh(1)l (xB)− εD jl(xD)h

(1)′
l (xB)

, (13b)
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where xB = ω
√

εBR/c, xD = ω
√

εDR/c and h(1)l denotes the spherical Hankel function of the
first kind. The nonlocal correction cl to the Mie coefficients is given as

cl = l(l +1)
jl(xNL) jl(xD)

xNL j′l(xNL)

εD − ε∞

ε∞
, (13c)

with xNL = kNLR. We note that for l = 1 the nonlocal correction in Eq. (13c) has the same
structural form as δNL in the nonlocal Clausius–Mossotti factor, Eq. (9). In fact they are related
as c1 = 2 j1(xD)δNL.

In the presence of the substrate, reflections from the substrate must be taken into account,
which changes Mie’s scattering matrix T to the total scattering matrix M given as

M = (I−TS)−1T. (14)

The total scattering matrix M takes into account the interactions between the substrate and
the sphere through the substrate scattering matrix S. To derive M, we use the transformation
relations between plane waves and spherical waves, and characterize the interactions between
the scattered spherical waves b and the substrate by the plane wave reflections. In particular, S
is given as

Slm1
l′m′1 = smm′

ll′

∫∫
dkxdky

f1y(1)lm y(1)l′−m′ + f2y(2)lm y(2)l′−m′

kBz
, (15a)

Slm2
l′m′2 = smm′

ll′

∫∫
dkxdky

f2y(1)lm y(1)l′−m′ + f1y(2)lm y(2)l′−m′

kBz
, (15b)

Slm2
l′m′1 =−smm′

ll′

∫∫
dkxdky

f2y(1)lm y(2)l′−m′ + f1y(2)lm y(1)l′−m′

kBz
, (15c)

Slm1
l′m′2 =−smm′

ll′

∫∫
dkxdky

f1y(1)lm y(2)l′−m′ + f2y(2)lm y(1)l′−m′

kBz
, (15d)

with

smm′
ll′ =

2il
′−l(−1)l+m+m′+1

kB

√
l′(l′+1)

√
l(l +1)

, y(1)lm =
∂Ylm(ΩkB)

∂θkB

, y(2)lm =
mYlm(ΩkB)

sinθkB

, (16)

where kB represents the wavevector of the plane wave in the background with |kB| = kB =√
εBω/c, kBz is the z component of kB with the imaginary part being positive, sinθkB is defined

as sinθkB =
√

k2
x + k2

y/kB, and the integration ranges of kx and ky are both from −∞ to ∞. The

coefficients fσ in Eq. (15) represent the reflection coefficients of the substrate for TE and TM
polarized plane waves, respectively, in which the substrate plays its role. The coefficients fσ
are expressed as

fσ =
rσ [1− exp(ikSz2t)]
1− r2

σ exp(ikSz2t)
exp(ikBz2R), (17a)

where kSz represents the z component of the wavevector in the substrate. Furthermore, rσ is the
reflection coefficient between the background and the semi-infinite substrate given as

r1 =
kBz − kSz

kBz + kSz
, r2 =

εSkBz − εBkSz

εSkBz + εBkSz
. (17b)
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Fig. 3. EELS measurements of the SP resonance energy E plotted as a function of (a) di-
ameter 2R and (b) inverse diameter 1/(2R). In (b), the black solid line is a linear fit to the
experimental data and serves as a guide to the eye, while the blue dashed line represents cal-
culations of a nonlocal sphere in a homogeneous environment [nonlocal Clausius–Mossotti
factor, Eq. (9)]. From the average large-particle (2R > 20 nm) resonances we fit εB = 1.53.
The red solid line represents calculations of a nonlocal sphere in vacuum situated on a
10 nm thick Si3N4 substrate with permittivity εS = 4.4 [49]. Material parameters for Ag
are taken from Ref. [50] and the Fermi velocity is vF = 1.39×106 m/s.

At this stage, we add that the reflection coefficients in Eq. (17b) can be exchanged with their
nonlocal expressions, see e.g. [48], to describe the interactions between a metal sphere and
metal film, while taking nonlocal response into account in both metal structures. Such a system
was recently studied experimentally in Ref. [16].

With the total scattering matrix M, we can numerically compute the extinction cross section
of the metal sphere on a substrate of finite thickness, using the relation

σext =− 1

k2
B|E0|2

Re(aTMa∗), (18)

where |E0| is the amplitude of the incident field, and superscripts T and * denote the transpose
and complex conjugate, respectively. From the extinction cross section we determine the SP
resonance energy.

4. Results

In Fig. 3(a), we show the EELS measurements of the SP resonance energy E as a function of
the particle diameter 2R. Two distinct features are present. The first is the spread of the res-
onance energy at a fixed particle diameter. In [1], we argue in detail that the spread is due to
shape variations of the nanoparticle. Briefly, from the 2D STEM images we determine the area
of the particle A and assign it a diameter, assuming a spherical shape

(
i.e. A = πR2

)
. Different

particles with slight deviations from spherical shape can lead to the same area and ultimately
the same diameter. However, their SP resonance changes and this is what we observe experi-
mentally. The important second feature we observe is a significant blueshift of the resonance
energy of 0.5 eV as the particle diameter decreases. The blueshift is in good agreement with ear-
lier results [24,26,27]. A classical local-response theory based on a size-independent dielectric
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function of the material does not predict any frequency shift at all.
Figure 3(b) displays again the SP resonance energy E, now as a function of the inverse par-

ticle diameter 1/(2R). The experimental measurements suggest a linear relationship between
the energy and inverse particle diameter. The nearly linear trend is also seen in the theoretical
calculations based on the hydrodynamic model, shown with dashed and solid lines in Fig. 3(b),
albeit with a smaller slope. We point out that the apparent 1/(2R) dependent blueshift is only
a first-order approximation in the hydrodynamic theory [1]. The dashed line in Fig. 3(b) cor-
responds to calculations of a hydrodynamic sphere embedded in a homogeneous environment,
i.e. the nonlocal Clausius–Mossotti factor described in Sec. 3.1. The permittivity of the back-
ground dielectric is fitted to the average resonance of the largest particles (2R > 20 nm) to
ensure the correct classical SP resonance. We find εB = 1.53. The solid line shows the reso-
nance energy determined from extinction cross section calculations of a hydrodynamic sphere
in vacuum situated on a 10 nm thick Si3N4 substrate, as described in Sec. 3.2. Here no fitting
of the background permittivity is performed and we use εS = 4.4 as the permittivity of the
substrate, suitable for Si3N4 [49]. The same material parameters for the Ag sphere are used in
both calculations [50]. While the substrate-based calculation shows an overall lower resonance
energy for all particle sizes, both approaches show a linear tendency with a nearly identical
slope. Compared to a free-space environment the presence of the dielectric substrate should
induce a larger blueshift in the hydrodynamic model [1], and indeed it does (comparison not
shown in Fig. 3). The fitted effective background permittivity in the calculations based on the
nonlocal Clausius-Mossotti relation is larger than that of free space, and this makes that the
two theoretical curves in Fig. 3(b) become almost parallel. Especially for the smallest particles[
1/(2R)> 0.1 nm−1

]
the trend is striking similar, which indicates that (i) only the dipole mode

of the sphere is important and (ii) the dipole mode is not significantly altered by the presence of
the substrate. However, for larger particle diameters

[
1/(2R)< 0.1 nm−1

]
the substrate alters

the dipole mode, which is visible in the slight convex curvature of the solid line in Fig. 3(b),
in contrast to the concave curvature of the dashed line. Surprisingly higher order multipoles in
the sphere, which are anticipated to be enhanced due to the presence of the substrate [51], show
no significant contribution in the optical response. This is in fact due to the large interband ab-
sorption present in Ag at the resonance energies of the higher order multipoles, which heavily
dampens the contribution from these modes.

From Fig. 3(b) we see that the experimentally observed blueshift exceeds the theoretical
blueshift predicted by the nonlocal Clausius–Mossotti factor. In [1], we conjectured that the
presence of the substrate could induce the experimentally observed larger blueshift, but from
Fig. 3(b) we see in more detail that the substrate-based calculations do not show a larger shift
in energy than the nonlocal Clausius–Mossotti factor.

5. Conclusions

We have studied the experimentally observed blueshift of the SP resonance energy of Ag
nanoparticles, when the particle diameters decrease from 26 nm to 3.5 nm. To interpret the
measurements we considered two different systems within the theory of the nonlocal hydro-
dynamic model: a metal sphere embedded in a homogeneous environment and a metal sphere
situated on a dielectric substrate of finite thickness. Surprisingly, we find that both systems
give rise to similar-sized blueshifts with decreasing particle size, despite the presence of the
symmetry-breaking substrate. Both theoretical calculations are in qualitative agreement with
the measurements, but the theoretically calculated blueshift is smaller than the blueshift ob-
served in the EELS measurements. Thus, we conclude that the inclusion of the substrate in
the theoretical calculations can not quantitatively explain the measurements. This leads us to
believe that the deviation between theory and experiment are to be sought for in the intrinsic
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properties of silver, such as the spill-out of electrons in combination with the screening from
the d electrons [52,53] and size-dependent changes in the electronic band structure [23], which
are not taken into account in a hydrodynamic description.
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