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Abstract
This review provides a broad overview of the studies and effects of nonlocal response in
metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic
model and the recently introduced generalized nonlocal optical response (GNOR) model. The
influence of nonlocal response on plasmonic excitations is studied in key metallic geometries,
such as spheres and dimers, and we derive new consequences due to the GNOR model.
Finally, we propose several trajectories for future work on nonlocal response, including
experimental setups that may unveil further effects of nonlocal response.
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1. Introduction

The excitation of surface plasmons (SPs), i.e. the collective
movement of conduction band electrons tightly bound to a
metal-insulator interface, governs most of the phenomena
observed in plasmonic studies. A few examples of the
vast number of surface-plasmon related effects feature the
large enhancement of the electric field in metal nanoparticles
of close proximity [1] and sharp metal geometries [2],
the squeezing of light beyond the diffraction limit [3, 4],
and the tunability of the optical properties of metallic
structures with size and shape [5]. These appealing
properties have found applications in different fields, such as
surface-enhanced Raman spectroscopy [6], biosensing [7, 8],
plasmonic waveguiding [9], cancer therapy [10], and on-chip
circuitry [11, 12].

The theoretical modelling of plasmonic phenomena is for
the most part based on the macroscopic Maxwell’s equations.
In particular, the optical response of metals is described

through the constitutive relations, which relate the response
of the material to the applied field. In the linear regime, the
constitutive relation relating the displacement field D to the
electric field E is

D(r, ω) = ε0

∫
dr′ε(r, r′, ω)E(r′, ω), (1)

where ε0 is the vacuum permittivity and ε(r, r′, ω) denotes
the nonlocal permittivity of the metal, here assumed scalar.
In a homogeneous medium, the nonlocal permittivity depends
spatially on r − r′, turning equation (1) into a convolution
which in k-space becomes the product

D(k, ω) = ε0ε(k, ω)E(k, ω). (2)

We see that nonlocal response corresponds to a k-dependent
dielectric function. For an isotropic response, we find
dependence only on the length of k, and not its direction.

In the simpler local-response approximation (LRA),
nonlocal effects are neglected and we write ε(r, r′, ω) =
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δ(r − r′)ε(ω), which allows us to straightforwardly perform
the integral in equation (1) as

D(r, ω) = ε0ε(ω)E(r, ω). (3)

Here, ε(ω) is the spatially constant permittivity of the metal,
usually described by the Drude-like dielectric function [26–28]

ε(ω) = εcore(ω) − ω2
p

ω(ω + iγ )
. (4)

In equation (4), ω2
p = n0e

2/(ε0m) is the unscreened plasma
frequency of the metal with n0 denoting the equilibrium
electron density of the free electrons, γ is the Drude damping
rate, and εcore(ω) is the response from the bound ions
and electrons, which account for effects such as interband
transitions. The importance of the LRA is accentuated by
its prevalence in the plasmonic community, being the most
commonly applied constitutive description [29]. The LRA
has successfully described a plethora of plasmonic phenomena
and experiments, such as optical far-field measurements
[30–32], electron energy-loss spectroscopy (EELS) [33–
40], cathodoluminescence experiments [41–43], near-field
microscopy [44], and surprisingly, even effects in the two-
dimensional material graphene [45] and plasmonic particles
interspaced by nanometer-sized gaps [46].

Despite its success, the LRA has been challenged on a
number of accounts. One example is the size-dependent SP
linewidth broadening observed in metal clusters and small
nanoparticles [47–49], which has to be phenomenologically
accounted for in the LRA through an increased damping
rate as a consequence of surface screening and scattering
[50–52]. Size-dependent resonance shifts of the SP in
noble metal nanoparticles have also been observed in both
optical measurements [53, 54] and EELS (figure 1(a)) [13–
16]. Another example is the multipole plasmon which,
besides the usual surface-plasmon polariton, can be supported
by the simple geometry of a metal-vacuum interface [55]
as a direct consequence of the spill-out of free electrons
beyond the classical metal boundary [56–58]. Thin metal
films have also been shown to support resonant excitations
above the plasma frequency due to confined longitudinal
waves [59, 60], which are not taken into account in the LRA.
Recently, several experiments on metal dimers with particles
in mutual subnanometer proximity have shown plasmonic
effects clearly going beyond the LRA (figures 1(b)–(d)) [17–
25]. A theoretical description of the metal based on ab initio
approaches such as density-functional theory (DFT) [61, 62]
or similar theories [63] seem to capture all of the observed non-
classical effects [64–67]. However, due to the computational
demand of such approaches, only very small system sizes
(few nanometers) can be considered [65], which puts serious
constraints on the feasibility of these approaches for a generic
plasmonic system, which is usually tens of nanometers or
more. Another simpler and computationally less demanding
path is to go beyond the LRA by taking into account
nonlocal response through a hydrodynamic approach [68].
The hydrodynamic approach has been able to describe size-
dependent resonance shifts of noble metal nanoparticles and

(a) (b)

(c) (d)

Figure 1. Schematic illustrations of (a) electron beam interacting
with silver nanoparticle on thin substrate [13–16],
(b) electromagnetic interaction of two nearby metal nanoparticles
[17–23], (c) gold nanoparticles in close proximity of gold film [24],
and (d) optical measurements of two gold-coated atomic-force
microscopy tips in close proximity [25]. (c) and (d) courtesy of
C Ciracı̀ and J Baumberg, respectively.

gap-dependent resonance shift in a particle-film system [24],
and can now with the inclusion of electron diffusion [69] also
describe size-dependent damping and the optical spectra of
closely-spaced dimers. Besides taking into account retardation
effects and being physically transparent, significant analytical
progress is also possible with the hydrodynamic approach.
Many of these properties in the hydrodynamic approach are
beneficial in the theoretical studies of generic plasmonic
systems with large (>10 nm) feature sizes.

The aim of this Topical Review is to give a comprehensive
overview of the real-space formulation of nonlocal response
in Maxwell’s equations. In particular, we review the
hydrodynamic [68] and the generalized nonlocal optical
response (GNOR) models [69], which are two examples
of nonlocal response theories. We show that nonlocal
response in metals manifests itself through the presence of
longitudinal waves. The influence of nonlocal response in
metallic nanostructures is exemplified by considering a silver
nanosphere, a silver dimer with Ångstrom-sized gaps, and a
core-shell cylinder with a nanometer-thin silver shell. Finally,
we discuss future theoretical and experimental directions to
unveil the effects of nonlocal response.

2. Phenomenological theory of nonlocal response

We begin by considering the real-space formulation of
Maxwell’s equations taking into account nonlocal response.
In the absence of external sources and using equation (1), the
nonlocal wave equation with assumed scalar nonlocal response
reads

∇ × ∇ × E(r, ω) =
(ω

c

)2
∫

dr′ε(r, r′, ω)E(r′, ω), (5)
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where we have furthermore assumed the material to be non-
magnetic, i.e. B(r, ω) = µ0H(r, ω), which is applicable
for plasmonic metals. We note that in equation (5) the
electromagnetic response of the material is described only
through the displacement field D(r, ω), which accounts for
effects both from the bound and free charges of the metal.
Recognizing that the LRA accounts successfully for many of
the observed plasmonic phenomena, we proceed by writing
the nonlocal permittivity as [70, 71]

ε(r, r′, ω) = ε(ω)δ(r − r′) + f (r − r′, ω), (6)

where f (r − r′, ω) is the scalar nonlocal response function
associated with a homogeneous medium. We make the
justifiable assumptions that f (r − r′, ω) is symmetric and
short-ranged [70]. We can express these assumptions
mathematically through the moments of the function∫

rf (r, ω)dr = 0, (7a)

∫
r2f (r, ω)dr = 2ξ 2, (7b)

where r2 ≡ (x2, y2, z2) and we have introduced the length
scale ξ as the range (or width) of the nonlocal response
function. Since the response function f (r − r′, ω) is short-
ranged (i.e. ξ in equation (7b) is small on the length scale
of the variations of the electric field), we Taylor expand the
electric field in the integrand of equation (5) around r. To
second order we find (omitting the frequency dependency)

Ei(r′) � Ei(r) + [∇Ei(r)] · (r′ − r)

+
1

2
(r′ − r)T ·

[
ĤEi(r)

]
· (r′ − r), (8)

where the Hessian matrix Ĥ has the elements Hij = ∂2/(∂i∂j )

with i, j = x, y, z. With these considerations in mind and
using the assumptions in equations (7)–(8), we can perform
the integral in equation (5) and find

∇ × ∇ × E(r, ω) =
(ω

c

)2 [
ε(ω) + ξ 2∇2

]
E(r, ω), (9)

where we have absorbed the zeroth-order moment integral
of f (r, ω) (i.e.

∫
f (r, ω)dr) into our definition of ε(ω).

Interestingly, equation (9) shows that scalar nonlocal response
manifests itself through the Laplacian term in the wave
equation, seemingly irrespective of the microscopic or
semiclassical origin, and with a strength given by ξ , which
relates to the width of the nonlocal response function through
equation (7b). This general analysis of nonlocality also
suggests the possibility of several nonlocal mechanisms
playing in concert and adding up to an effective ξ 2 [72].
Furthermore, we have transformed the integro-differential
equation of equation (5) into a regular differential equation,
where the presence of the Laplacian operator does not give
rise to increased numerical difficulties than the already present
double-curl operator. As we will see in sections 3 and 4, the
nonlocal hydrodynamic and GNOR models, respectively, can
also be rewritten into the wave-equation form of equation (9),
although the Laplacian operator is replaced by a gradient-of-
the-divergence operator [∇(∇·)].

3. Hydrodynamic model

We discuss now the hydrodynamic model for the free-electron
gas, which will allow us to determine the nonlocal length
scale ξ introduced in equation (9). The idea of modeling
the free-electron gas in a hydrodynamic formulation was
first introduced by Bloch in a seminal paper in 1933 [73].
In 1974, Ying [74] extended Bloch’s non-retarded approach
to a more general density-functional formalism, allowing to
go beyond the Thomas–Fermi ground state, which lacked
information about the correlation and exchange energies of the
electron gas. Shortly after Eguiluz and Quinn [75] included
retardation effects. Despite the generalization by Ying [74],
the Thomas–Fermi description of the electron gas in the
hydrodynamic model remained popular, and was extensively
used in the field of solid-state physics in the 1970s and
the beginning of the 1980s. The effect of electron density
inhomogeneity and spatial dispersion in planar interfaces [57,
76–78], multilayered structures [79, 80], spherical particles
[81–83] and voids [84], and cylindrical particles [85, 86] was
given a considerable attention. Especially, the results obtained
for homogeneous planar surfaces showed good agreement with
experiment [68].

Recently, interest in the hydrodynamic model was
rekindled when a finite-element numerical implementation of
the hydrodynamic equations was presented [87–89], which
was subsequently utilized to study the plasmonic cylindrical
dimer [88], surface-enhanced Raman spectroscopy [90], and
waveguiding in metallic nanostructures [91]. Simultaneously,
application of transformation optics to the hydrodynamic
model allowed for analytical solutions of several non-trivial
plasmonic structures, even some containing singular geometric
features [92–94]. Additionally, numerous different metallic
geometries and plasmonic effects have been studied using the
hydrodynamic model, such as scattering and mode analysis
of cylindrical structures, including nanotubes [91, 95–100],
roughness effects on plasmonic tips [101, 102], nonlinear
effects in nonlocal media [103–105], scattering of light
off three-dimensional nanostructures [24, 106–110], surface
plasmon propagation in metal-insulator, metal-insulator-
metal, insulator-metal-insulator, and hourglass waveguides
[111–115], epsilon-near-zero and perfect imaging effects
[116–119], influence of nonlocal response on the Casimir
force [120], studies of hyperbolic metamaterials and periodic
media [121–126], investigations of nonlocal effects in
EELS [127, 128], and coupling of dipole emitters to plasmonic
structures [128–130]. Theoretical work has also been done
to compare the hydrodynamic approach with more advanced
approaches such as density-functional theory [65, 131, 132].
Finally, other nonlocal models besides the hydrodynamic
model have also been utilized to study different geometries
[51, 133–140].

As a detailed derivation of the hydrodynamic model has
been reported before [68, 73, 75, 141], we focus here on the
most important steps of the derivation and extract the essential
physics of the hydrodynamic model. The basic assumption
of the hydrodynamic model is that the many-electron energy
and dynamics can be expressed in terms of a scalar field
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and a velocity field, the electron density n(r, t) and the
hydrodynamic velocity v(r, t), respectively. The energy of
the electron plasma is a functional of the electron density
and velocity. The dynamics of these variables under the
influence of macroscopic electromagnetic fields E(r, t) and
B(r, t) is obtained by functional differentiation of the energy
(i.e. Hamilton’s principle). Functional differentiation with
respect to the velocity field gives the hydrodynamic equation
of motion [68]

[∂t + v · ∇] v = − e

m
[E + v × B]− 1

m
∇

δG[n]

δn
−γ v, (10)

while functional differentiation with respect to the electron
density gives the continuity equation

∂tn = −∇ · (nv) , (11)

expressing charge conservation. On the right-hand side of
equation (10), the first term is the Lorentz force, while
the second term can take into account the correlation,
exchange and the internal kinetic energy of the electron gas,
if an appropriate functional G[n] is chosen [74]. Here,
δG[n]/δn denotes the functional derivative. The last term of
equation (10), which represents damping in terms of the bulk
damping rate γ , cannot be obtained from the energy functional
approach and is therefore added phenomenologically.

The most common, and also the simplest, approach [56,
68] is to use the Thomas–Fermi model for the functional G[n],
given as

G[n(r, t)] =
∫

3h2

10m

(
3

8π

) 2
3

n
5
3 (r, t)dr, (12)

which describes only the internal kinetic energy of the electron
gas. The functional derivative of equation (12) can now be
performed

δG[n]

δn
= h2

2m

(
3

8π

) 2
3

n
2
3 (r, t), (13)

which upon insertion in equation (10) finally gives

[∂t + v · ∇] v = −γ v − e

m
[E + v × B] − β2

n
∇n. (14)

In analogy with fluid hydrodynamics, the last term of
equation (14) represents the pressure, which is proportional to
β2 = 1/3v2

F with vF denoting the Fermi velocity, and describes
a force that will act to homogenize any inhomogeneity in the
electron density. The pressure term gives rise to nonlocal
response in the hydrodynamic model. The prefactor 1/3
connecting β2 to v2

F applies only in the low-frequency limit
(ω � γ ) and must be multiplied by an additional factor of 9/5
in the high-frequency limit (ω � γ ) [142]. Hence, we use the
relation β2 = 3/5v2

F in our subsequent calculations [143].
In the spirit of linear-response theory, we now follow the

usual approach [68, 141] to solve equations (11) and (14),
by expanding the physical fields in a non-oscillating term
(e.g. n0 is the homogeneous equilibrium electron density),

Table 1. Plasma frequencies ωP, Drude damping rates γ , Fermi
velocities vF and diffusion constants D for the metals Na, Ag, Au
and Al.

h̄ωP [eV] h̄γ [eV] vF [106 m s−1] D [10−4 m2 s−1]
A = 0.5 A = 1

Na 6.04 0.16 1.07 1.08 2.67
Ag 8.99 0.025 1.39 3.61 9.62
Au 9.02 0.071 1.39 1.90 8.62
Al 15.8 0.6 2.03 1.86 4.59

Note: The method used for determining D is described by
Raza [177].

and a small (by assumption) first-order dynamic term, as in
perturbation theory, thereby linearizing the equation of motion
and continuity equation. In the frequency domain, we obtain
the coupled electromagnetic equations [88, 96]

∇ × ∇ × E(r, ω)=
(ω

c

)2
εcoreE(r, ω) + iωµ0J(r, ω), (15a)

β2

ω (ω + iγ )
∇ [∇ · J(r, ω)] + J(r, ω) = σE(r, ω), (15b)

where J(r, ω) = −en0v(r, ω) is the induced current density,
and σ = ε0iω2

p/(ω + iγ ) is the Drude conductivity and
relates to the Drude permittivity (equation (4)) as ε(ω) =
εcore + iσ/(ε0ω). We see that in the LRA limit of β → 0,
equation (15b) reduces to Ohm’s law. Now, by combining
equations (15a) and (15b), we can rewrite the governing
equations in the hydrodynamic model as

∇×∇×E(r, ω) =
(ω

c

)2 [
ε(ω) + ξ 2

H∇(∇·)] E(r, ω), (16)

where we find the nonlocal parameter in the hydrodynamic
model to be [69, 91]

ξ 2
H(ω) = εcore(ω)β2

ω(ω + iγ )
. (17)

In the absence of interband effects and bulk damping
mechanisms (εcore = 1 and γ = 0), the nonlocal parameter
is simply ξH = β/ω, which is a purely real-valued quantity.
We also see that the nonlocal parameter increases with the
Fermi velocity (through β). In table 1 we list values for ωp, vF,
and γ for relevant plasmonic metals. In addition, the response
from the bound electrons εcore(ω) can be determined from the
measured bulk dielectric functions εexp(ω) using the recipe
εcore(ω) = εexp(ω) + ω2

p/(ω
2 + iγω) [138].

Comparing the hydrodynamic wave equation (equa-
tion (16)) with the wave equation from the phenomenological
nonlocal model (equation (9)), we see that the mathematical
operator responsible for the nonlocal effects is the gradient-of-
the-divergence and not the Laplacian. In fact, a closer k-space
analysis of equation (9) reveals that the Laplacian operator in-
troduces a weak spatial dispersion in the transverse part of the
electric field [91], which is in contrast with the hydrodynamic
wave equation where spatial dispersion only affects the longi-
tudinal part of the electric field [96]. The Laplacian operator in
the phenomenological model stems from the scalar nonlocal
response function in equation (6).

4
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Besides the hydrodynamic wave equation in equation (16),
an additional enlightening way of writing up the nonlocal
electromagnetic equations for the electric field is in terms of
the divergence and curl of the electric field [76, 96, 112](∇2 + k2

L

)
∇ · E(r, ω) = 0, (18a)

(∇2 + k2
T

)
∇ × E(r, ω) = 0. (18b)

Here, k2
L = ε(ω)/ξ 2

H and k2
T = (ω/c)2ε(ω) are the wave

vectors of the longitudinal and transversal electric field,
respectively. In the Fourier domain (k-space), it becomes
clear that equation (18a) describes the longitudinal part of
the electric field, while equation (18b) corresponds to the
transversal part of the electric field. The longitudinal and
tranversal electric fields are two different types of waves,
which in a homogeneous medium are uncoupled, but can
in the presence of an interface be coupled by means of the
electromagnetic boundary conditions. We stress that the
difference between the LRA and the inclusion of nonlocal
response in the hydrodynamic approach is the presence of the
longitudinal wave, which will be responsible for all nonlocal
effects.

3.1. Additional boundary condition

Within the LRA, Maxwell’s boundary conditions, commonly
derived using pill-box and current loop arguments, are
sufficient to determine the amplitudes of the transversal
electric and magnetic fields. However, the presence of
an additional wave due to nonlocal response will require
an additional boundary condition (ABC) to determine the
amplitude of the longitudinal wave [77]. Inspired by the
many discussions on the appropriate boundary conditions in
the nonlocal hydrodynamic model [68, 77, 144–147], we will
assume that the equilibrium free-electron density n0 of the
metal has a step profile, i.e. n0 is constant inside the metal
and abruptly drops to zero at the metal-dielectric interface.
The consequence of this assumption is that the induced charge
density ρ will vanish at the metal-dielectric boundary, at which
a pill-box argument on the continuity equation ∇ · J = iωρ

reveals the additional boundary condition

J · n̂ = 0, (19)

stating that the normal component of the induced current
density J vanishes at the metal boundary. The step profile
of n0 is also at the heart of the LRA, but in contrast to
equation (19), the normal component of the induced current at
the metal boundary will in general not vanish, due to the LRA
constitutive relation J(r, ω) = σ(ω)E(r, ω). We note that the
ABC in equation (19) will not allow us to include the quantum
mechanical effect of spill-out of electrons occurring due to
the finite potential difference at the metal-dielectric interface.
In fact, the ABC corresponds to the assumption of an infinite
work function in more microscopic theories.

We add that the ABC stated in equation (19), which is
valid for a metal-dielectric interface, can be rewritten in terms
of the normal components of the electric field as [68, 91]

εcoreEm · n̂ = εdEd · n̂, (20)

where εd is the permittivity of the dielectric, εcore is the response
due to the bound charges in the metal (see equation (4)), and
Em and Ed are the electric fields in the metal and dielectric,
respectively. Thus, in the special case of a metal-vacuum
interface with a metal that has no response due to bound charges
(εcore = 1), then the normal component of the electric field is
continuous. For completeness, we add that a second ABC is
needed at a metal-metal interface [146–148], but we will not
discuss such interfaces in the following.

4. Generalized nonlocal optical response

A hitherto disregarded effect in the discussion of metallic
nanostructures and nonlocal response is the classical
phenomenon of electron diffusion [72, 149]. While the
hydrodynamic model incorporates the convective current due
to the pressure term in equation (14), it completely neglects
any currents due to diffusion. The GNOR model expands
the hydrodynamic theory to also take into account electron
diffusion. We now consider the mathematical description
of this effect. The inclusion of electron diffusion alters the
continuity equation, which in its linearized form now reads

−iωen(r, ω) = D∇2[en(r, ω)] + ∇ · [−en0v(r, ω)]

= ∇ · J(r, ω), (21)

also known as the convection-diffusion equation. Here, D is
the diffusion constant, and the induced current density, given
by Fick’s law, now has a diffusive contribution

J(r, ω) = −en0v(r, ω) + eD∇n(r, ω). (22)

Combining the convection-diffusion equation and Fick’s law
for the current density with the linearized form of the
hydrodynamic equation (equation (14)) [69], we eventually
arrive at the following constitutive relation for the current
density

[
β2

ω(ω + iγ )
+

D

iω

]
∇[∇ · J(r, ω)] + J(r, ω) = σJ(r, ω),

(23)
which we immediately recognize to have the same form as
the hydrodynamic constitutive relation (equation (15b)). The
difference lies in the prefactor of the first term, which we can
rewrite as

β2

ω(ω + iγ )
+

D

iω
= β2 + D(γ − iω)

ω(ω + iγ )
≡ η2

ω(ω + iγ )
, (24)

where we have defined the parameter

η2 ≡ β2 + D(γ − iω). (25)

Comparing equation (23) with equation (15b), we see that the
mathematical considerations from the hydrodynamic model
can be mapped directly to the GNOR model using the simple
substitution β2 → η2. Thus, we straightforwardly find the
GNOR nonlocal parameter to be

ξ 2
GNOR = εcore(ω)[β2 + D(γ − iω)]

ω(ω + iγ )
. (26)

5
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and similarly, the longitudinal wave vector in the GNOR model
is k2

L = ε(ω)/ξ 2
GNOR.

Considering the specific case with no interband effects
and no bulk damping, we see that the diffusion constant only
contributes to the imaginary part of ξ 2

GNOR, making the nonlocal
parameter complex-valued (in contrast to the hydrodynamic
model). Additionally, β2 contributes only to the real part of
ξ 2

GNOR (as in the hydrodynamic model). In the general case, the
hydrodynamic parameter β ∝ vF (or the convective current)
is still the main contributor to the real part of ξGNOR, while
the imaginary part of ξGNOR is mostly characterized by the
diffusion constant D (or the diffusive current). Table 1 lists
values for D for relevant plasmonic metals.

A more elaborate description of the response of the free
electrons in metals based on the Boltzmann equation has
been reported by Lindhard [150], which includes Landau
damping but not diffusive currents. Inclusion of diffusion
in the Boltzmann description is possible by ensuring the
perturbed electron density to relax to the local electron
density [151] (rather than to the unperturbed electron density
as done in the Lindhard description). This correction to the
Boltzmann dielectric function was provided by Mermin [152].
Interestingly, Halevi [143] compared the dielectric function
of the hydrodynamic model with the Boltzmann–Mermin
dielectric function in the small k-limit and showed that

η2
Halevi =

3
5ω + i 1

3γ

ω + iγ
v2

F, (27)

to ensure agreement between the two models, which is in
contrast to the usual η = β in the hydrodynamic model.
In particular, the result by Halevi shows that the Mermin
correction (i.e. inclusion of diffusion in the Boltzmann
equation) renders the usual hydrodynamic β parameter
complex-valued, exactly as in the GNOR theory where the
substitution β2 → η2 is crucial. Comparison of the imaginary
parts of equations (25) and (27) provides an estimate for the
diffusion constant D as

D = 4

15

γ

ω2 + γ 2
v2

F. (28)

Inserting appropriate values for the different parameters in
equation (28), see table 1, we find that D ≈ 10−6 m2 s−1

at optical frequencies, which is approximately two orders of
magnitude smaller than the values for D for nanoparticles
shown in table 1. This discrepancy of values of the diffusion
constant shows that the diffusion in plasmonic nanoparticles
cannot be explained by bulk diffusion. On the theoretical
side, it is important to see that inclusion of diffusion in the
Boltzmann equation leads to a complex-valued η just as the
inclusion of diffusion in the hydrodynamic model (i.e. GNOR
theory) also results in a complex-valued η. Observed diffusion
constants in nanoparticles are thus mainly due to surface effects
(such as increased Landau damping), but we are not aware
of a derivation based on the Boltzmann equation of surface
diffusion with the correct magnitude.

5. Nonlocal effects in plasmonic systems

This section is devoted to studying some of the relevant
plasmonic systems, which exhibit features due to nonlocal
response. We begin in section 5.1 by giving an overview of
the electromagnetic response of a single spherical nanoparticle,
where the important length scale is the particle diameter. Next
in section 5.2 we consider the plasmonic dimer, consisting
in this case of two infinitely long cylinders, and study the
dependence of the optical spectrum on the gap size. Finally
in section 5.3, we also take a look at the interesting properties
of a core-shell nanowire, consisting of an insulating core and
a nanometer-sized metallic shell. We will mainly compare
the GNOR model with the LRA, while comparison with the
hydrodynamic model will also be displayed when relevant.

5.1. Spherical particle

The metallic spherical particle represents an archetypical
geometry studied in plasmonics due to the support of localized
surface plasmons and the presence of analytical solutions.
The electromagnetic scattering problem of a metal sphere of
radius R and Drude permittivity ε(ω), which is excited by a
plane monochromatic wave and homogeneously embedded in
a material with dielectric constant εB, was first analytically
solved by Mie in the LRA [153]. The exact solution provided
by Mie is commonly named Mie theory [154, 155] and
takes into account retardation effects. Later, Ruppin [82, 83]
extended the Mie theory to include nonlocal response in the
metallic sphere by taking into account the longitudinal wave.
In the simpler non-retarded limit, the multipolar polarizability
of the metal sphere was extended to include nonlocal effects
[137, 156–159] and used to study the optical properties of very
small particles R < 10 nm, where retardation effects can for
the most part be safely neglected.

In this section, we present the nonlocal dipolar
polarizability, which in the LRA is described by the Clausius–
Mossotti factor [29], to study the extinction cross section of
spheres with diameters below 20 nm. In this size range and
under the excitation of a plane wave, the effect of retardation
is small and the response of the metal sphere is dominated by
the dipolar mode, as we will see in the comparison with fully
retarded calculations in section 5.1.3. By considering the poles
of the nonlocal dipolar polarizability, we directly show that the
nonlocal parameters β and D relate to the SP resonance energy
and linewidth, respectively.

The derivation of the nonlocal dipolar polarizability αNL

is detailed elsewhere [16], so here we simply state the result
for the non-retarded limit

αNL = 4πR3 ε − εB (1 + δ NL)

ε + 2εB (1 + δNL)
, (29a)

where the nonlocal correction is given as

δNL = ε − εcore

εcore

j1(kLR)

kLRj ′
1(kLR)

. (29b)

Here, jl is the spherical Bessel function of the first kind
of angular-momentum order l, and the prime denotes
differentiation with respect to the argument. In the LRA,
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δ NL → 0 and equation (29) simplifies to the LRA dipolar
polarizability, described by the well-known Clausius–Mossotti
factor (ε − ε B)/(ε + 2εB). We note that nonlocal effects
enter the Clausius–Mossotti factor as an elegant and simple
rescaling of either the metal permittivity [51] from ε to ε̃ =
ε(1 + δNL)−1 or of the background permittivity [160] from εB

to ε̃B = εB(1 + δNL).
The SP resonance energy follows theoretically from

the Fröhlich condition, i.e., we must consider the poles of
equation (29)

ε + 2εB (1 + δNL) = 0, (30)

which will be given by a complex-valued resonance frequency
ω = ω′ + iω′′. The real part ω′ gives the SP resonance
frequency, while the imaginary part ω′′ is related to the SP
resonance linewidth. In the following analytical analysis based
on the GNOR model, we consider for simplicity the case
of a particle in vacuum (εB = 1) with no interband effects
(εcore = 1) and find (to first order in 1/R) [69]

ω′ = ωp√
3

+

√
2β

2R
, (31a)

ω′′ = −γ

2
−

√
6

12

Dωp

βR
. (31b)

In equation (31a), the first term is the common size-
independent local-response Drude result for the SP resonance
that also follows from the poles of the LRA polarizability,
and the second term gives the size-dependent blueshift due
to the hydrodynamic pressure. In equation (31b), we have
again the size-independent LRA term, while the second term
shows a size-dependent linewidth due to diffusion. We can
also clearly see that only a size-dependent blueshift is present
in the hydrodynamic model, while the GNOR also accounts for
a size-dependent SP linewidth. With the inclusion of interband
effects, this clear distinction becomes somewhat blurred, since
the hydrodynamic model will also show an extremely weak
size-dependent linewidth. The origin to the size dependence in
nonlocal response is from the smearing of the induced surface
charges over a finite distance (few Å) [88, 90, 97, 161, 162].
Yan [97] showed explicitly how the smearing of induced
charges into the metal leads to a size-dependent blueshift
in the hydrodynamic model. In contrast, the delta-function
behaviour of the induced surface charges in the LRA leads to
no dependence on size. We point out that a 1/R dependence
on the blueshift and the linewidth of the SP resonance energy
of small Ag nanoparticles has been experimentally observed
using optical spectroscopy [47, 50, 53, 54, 163–166].

With the nonlocal polarizability we can determine the
extinction cross section Cext, which is the sum of the scattering
and absorption cross sections, of a metal sphere using the
relation [155]

Cext = k4
B

6π
|αNL|2 + kBIm(αNL), (32)

where kB = (ω/c)
√

εB is the wave vector in the homogeneous
background dielectric medium. Equation (32) allows for a
more quantitative assessment, based on an observable quantity,
of the size-dependent blueshift and linewidth broadening of

Figure 2. (a) Sketch of a plane wave impinging on a silver sphere of
radius R. (b) Extinction cross section (in units of the geometrical
cross section πR2 of the sphere) of a silver sphere in vacuum for
decreasing sphere diameter calculated using the GNOR model
(black solid lines), hydrodynamic model (blue dashed lines) and
LRA (red dash-dotted lines). For clarity, each spectrum is displaced
vertically by 1.5 normalized unit. (c)–(d) Resonance energy and
full-width at half maximum (FWHM) of the dipole mode of a silver
sphere as a function of diameter 2R, respectively.

the dipolar SP resonance anticipated from the approximate
analytical relations in equation (31). In figure 2(b) we show
the extinction cross section of a small Ag sphere, sketched
in figure 2(a), with diameter varying from 4 nm to 12 nm,
calculated in the GNOR theory (black line), hydrodynamic
model (blue line) and LRA (red line). As expected, the
LRA shows no change in resonance energy or linewidth of
the dipolar SP with size. The hydrodynamic model shows a
blueshift of the SP with decreasing diameter and a slightly
smaller SP amplitude as a consequence of small, but finite,
surface absorption due to bulk material losses and interband
transitions. The GNOR model shows both blueshift and
linewidth broadening of the SP resonance with decreasing
particle size. Quantitatively, we see in figures 2(c) and (d) that
a blueshift of ∼0.2 eV and an increased linewidth broadening
of ∼0.5 eV is seen when the sphere diameter decreases from
20 nm to 2 nm. We note that the size-dependent blueshift
exceeds the 1/R-dependency, given by the analytical relations
in equation (31), for diameters below 10 nm and higher-order
terms become important [15]. The hydrodynamic model
shows the same blueshift of the SP as the GNOR model, but
no significant increase in linewidth. In particular, a weak
size-dependent linewidth in the hydrodynamic model can be
seen in figure 2(d) for diameters below 5 nm, which is due
to the inclusion of bulk losses (i.e. γ �= 0) and interband
effects.
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Figure 3. Resonance energy as function of particle diameter 2R of
silver nanoparticles dispersed on a 10 nm silicon nitride membrane
measured with EELS. The EELS data is collected by positioning the
electron beam at the surface of the silver particle to strongly excite
surface plasmons (see insets) [15]. The curves show calculations of
a silver sphere in a homogeneous background using equation (29) in
the GNOR model (black solid line) and LRA (red dash-dotted line).
From the average resonance energy of the largest particles
2R > 20 nm, we fit εB = 1.98.

5.1.1. Size-dependent resonance shift. The size-dependent
shift of the SP resonance energy of small metal particles has
been experimentally observed on several occasions [13, 47,
53, 54, 163, 167, 168]. It has been found that alkali metals,
such as potassium, redshift with decreasing particle size,
while noble metals, such as silver and gold, blueshift with
decreasing particle size. While the redshift in alkali metals
is explained to be a consequence of the spill-out of free
electrons, the blueshift in noble metals is mainly attributed
to the screening from lower-lying band electrons, such as the
d-band in silver [169], although additional sources for the
blueshift are also present [18, 163, 170].

Recently, EELS measurements on silver nanoparticles
dispersed on thin (�10 nm) substrates have shown a strong
blueshift of the SP resonance energy, when the particle
diameter decreases from approximately 25 nm down to 2 nm
[14–16]. In figure 3 we show EELS measurements of the
resonance energy of silver nanoparticles dispersed on a 10 nm
silicon nitride membrane as a function of diameter [15].
We see that the SP resonance energy shows a significant
increase from approximately 3.2–3.7 eV in the diameter range
considered. Additionally, we show in figure 3 calculations
of the SP resonance energy using the dipolar polarizability
(equation (29)) in the GNOR model (black line) and in the
LRA (red line). As a crude approximation we may account
for the effect of the substrate by incorporating it into an
effective homogeneous background permittivity εB. In this
approximation, one uses the average resonance energy of
the largest particles 2R > 20 nm to fit the background
permittivity εB to ensure agreement with the LRA in the
large-diameter range [14, 15]. The assumption behind this
approach is that the effective background permittivity does

Figure 4. Extinction cross section (in units of the geometrical cross
section πR2 of the sphere) of a silver sphere in vacuum with
diameter 2R = 10 nm as a function of energy h̄ω, calculated within
the GNOR (black solid line), LRA (red dash-dotted line), and
Kreibig (green dash-dotted line) approaches, see section 5.1.2. The
value A = 0.5 has been used for the Kreibig approach.

not depend on the radius of the particle, but more detailed
theoretical calculations by Yan [97] show variations of 20%
for particle radii varying from 2 to 18 nm. As expected
from the discussion of figure 2, the SP resonance energy
in the LRA is size-independent, while the GNOR model
shows a blueshift, which is in qualitative agreement with the
experiments. However, the experimentally-measured blueshift
is larger. This difference was initially conjectured to be related
to the inaccurate modeling of the substrate [15], however,
a proper inclusion of the electromagnetic effects of the thin
substrate has interestingly been shown not to be able to account
for the discrepancy [16]. Instead the explanation for the
discrepancy may be related to more complicated phenomena in
silver, such as an inhomogeneous equilibrium electron density
due to Friedel oscillations and electron spill-out [15] or changes
in the electronic band structure [163].

5.1.2. Size-dependent damping. The phenomenon of
size-dependent damping in metal nanoparticles has been
extensively observed in experiments [47, 48, 50, 163, 171–
173]. The theoretical approach to account for this effect in
the LRA, proposed by Kreibig [50] and adopted widely by
researchers in the field [174], has been to phenomenologically
modify the Drude bulk damping parameter γ as

γ → γ + A
vF

R
, (33)

which is only valid for spherical particles of radius R.
Here, A is a constant, which is related to the probability
of the free electrons scattering off the surface of the
particle. Experimental observations and advanced theoretical
calculations have been compared to this approach, resulting in
most cases in a value for A close to unity [48, 51, 175, 176]. In
the following, we denote the method described in equation (33)
as the Kreibig approach. In figure 4, we compare the extinction
cross section of a silver sphere with diameter 2R = 10 nm,
calculated within the GNOR (black line), LRA (red line), and
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Kreibig (green line) approaches. As we see from figure 4
the Kreibig approach displays a size-dependent broadening
as in the GNOR theory (in contrast to the LRA), but no
size-dependent resonance shift (in agreement with the LRA).
The SP linewidths are practically the same in the GNOR and
Kreibig calculations due to the chosen value for D.

The Kreibig approach has been quite successful in
describing the increased linewidth of SPs for different metals
and geometries using a value for A that is close to unity. It
is therefore desirable to ensure that the value for the diffusion
constant D in the GNOR model gives rise to the same SP
linewidth broadening as with the Kreibig approach. An
estimate for D can be given by comparing the size-dependent
term in equation (31b) with the size-dependent term using the
Kreibig approach, i.e. ω′′

k � −γ /2 − Av F/(2R). Here we
find the simple relation

D = 3
√

10

5
A

v2
F

ωp
∝ An

1
6
0 , (34)

which shows a linear scaling with the Kreibig parameter A

and a weak scaling with the equilibrium electron density n0.
Using appropriate material values, equation (34) provides
a quite accurate estimate for D (to within a factor of 2
for simple metals) compared to more thorough numerical
investigations [177] for the plasmonic metals listed in table 1.
However, due to the lack of inclusion of the bound electrons
(i.e. εcore �= 1) in equation (34), metals with similar plasma
frequency and Fermi velocity, such as gold and silver, give
rise to the same value for D, which is only approximately
correct. We have therefore used a numerical routine described
by Raza [177] to ensure that the value for D in the GNOR
model gives rise to identical SP linewidth broadening for a
spherical particle as the Kreibig approach. The values for D

(appropriate for A = 0.5 and A = 1) using the numerical
routine are summarized in table 1 for several plasmonic metals.

From equation (33), it is clear that the Kreibig approach
is only a correction to first order in 1/R. In contrast, the
GNOR model contains corrections of order 1/R, 1/R2, and
so on. Thus, a signature of the GNOR model could be to
find the linewidth broadening of the SP resonance to exceed
the 1/R-dependency given by the Kreibig approach. Such
measurements could also be used to determine the appropriate
value for D. Finally, we stress that size-dependent damping in
non-spherical particles is also described by the GNOR model.

5.1.3. Retardation effects. In the previous sections, we have
discussed the nonlocal optical response of a metal spherical
particle in the nonretarded approximation, thus neglecting
retardation effects. Here, we discuss the validity of the
nonretarded approximation and the importance of retardation
effects for different metals. One of the advantages of
describing nonlocal response in the hydrodynamic approach is
the ability to take into account retardation effects (in contrast
to ab initio calculations such as DFT) [68, 75]. As an example,
the retarded multipolar response of a sphere including nonlocal
response has been determined by Ruppin [82, 83] by extending
Mie theory to take into account longitudinal waves. In the

Figure 5. (a) Extinction cross section (in units of the geometrical
cross section πR2 of the sphere) of a sodium sphere in vacuum with
diameter 2R = 15 nm as a function of energy h̄ω, calculated within
the GNOR model using the fully-retarded multipolar response
(black line) and the nonretarded dipolar response (green line).
(b) Same as (a) but for a silver sphere.

retarded framework, the extinction cross section of a sphere
in a homogeneous background can be determined using the
relation [82, 83, 155]

Cext = −2π

k2
B

∞∑
l=1

(2l + 1) Re
(
tTE
l + tTM

l

)
, (35)

where l denotes the angular momentum. Here, the nonlocal
Mie scattering coefficients are given as [82, 83, 106, 128]

tTE
l = −jl(xT)[xBjl(xB)]′ + jl(x B)[xTjl(xT)]′

jl(xT)[xBh
(1)

l (x B)]′ − h
(1)

l (xB)[xTjl(x T)]′
, (36a)

tTM
l = −εjl(xT)[xBjl(x B)]′ + εBjl(xB)

{
[xTjl(xT)]′ + 
l

}
εjl(xT)[xBh

(1)

l (x B)]′ − εBh
(1)

l (xB)
{
[xTjl(xT)]′ + 
l

} ,

(36b)

where xB = kBR, xT = kTR, and h
(1)

l denotes the spherical
Hankel function of the first kind. The nonlocal correction 
l

to the Mie coefficients is given as


l = l(l + 1)jl(x T)
ε − ε∞

ε∞

jl(x L)

xLj ′
l (xL)

, (36c)

with xL = kLR. We note that for l = 1 (dipole mode) the
nonlocal correction in equation (36c) has a similar form as δNL

in the nonlocal Clausius–Mossotti factor, equation (29) [16].
To examine the influence of retardation, we show in

figure 5 the extinction cross section of a metal sphere in
the GNOR model with a diameter 2R = 15 nm calculated
with retardation (black line) and in the nonretarded limit
(green line). In particular, figure 5(a) shows the results for
a sodium sphere, which is a prototypical metal studied with
DFT [65, 66, 131, 132, 178]. Here, we see that retardation
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effects already set in and give rise to a redshift of the
SP resonance energy and a decrease in the extinction cross
section amplitude for R = 7.5 nm. Interestingly, this shows
that retardation is important for individual nanoparticles at
a size scale where nonlocal response still plays a role (see
figure 2) [179]. Retardation becomes even more paramount
in larger structures such as the dimer, which we discuss in
section 5.2. In contrast to this result on the sodium sphere,
retardation shows no significant influence on a silver sphere
of the same size, see figure 5(b). For silver spheres, larger
diameters must be considered (2R > 20 nm) before retardation
effects show up, which justifies our nonretarded approach
in the previous sections. The validity of the nonretarded
limit for the silver particle is extended to larger sizes than
the sodium particle due to the permittivity of silver. This
interplay between material permittivity and particle size can
be clearly seen from the criterion of validity for the quasistatic
approximation λ � 2πR|√ε|, where λ denotes the free-space
wavelength [155].

5.1.4. Multipolar response. We have so far focused on
nonlocal effects on the dipole mode of a small sphere and
shown that this mode dominates the extinction spectrum for
diameters below 20 nm. However, other excitation sources,
such as a swift electron (used in EELS measurements), produce
significantly more inhomogeneous electric-field distributions
than the plane-wave excitation used in determining the
extinction cross section [128, 138]. When in the vicinity of a
metal sphere, such sources can excite higher-order multipoles,
even in spheres with diameters below 20 nm [128, 180]. Thus,
it is relevant to consider the nonlocal resonance condition for
all multipoles given in the nonretarded limit as [128]

lε +
(
l + 1 + 
nr

l

)
εB = 0, (37a)

where 
nr
l is the nonretarded limit of 
l of equation (36c),

given as


nr
l = l(l + 1)

ε − εcore

εcore

jl(xL)

xLj ′
l (xL)

. (37b)

We see that for l = 1, equation (37) reduces to the dipole
resonance condition stated in equation (30). As with the
condition for the dipole resonance given in equation (30), we
can determine an approximate solution to equation (37) in the
simple case of εB = εcore = 1. We then find the complex
resonance frequencies ωl = ω′

l + iω′′
l to order 1/R to be

ω′
l = ωp√

1 + (l + 1)/ l
+

√
l(l + 1)

β

2R
, (38a)

ω′′
l = −γ

2
− l

√
l + 1

4
√

2l + 1

Dωp

βR
(38b)

which shows a clear dependence on the angular momentum
l. Specifically, equation (38) shows that the size-dependent
resonance shift and linewidth broadening increases with higher
order of angular momentum. This means that e.g. the
quadrupolar mode of the sphere experiences a larger blueshift
and linewidth broadening due to nonlocality than the dipolar
mode. Higher-order modes have electric fields which are more

Figure 6. (a) Electron energy-loss probability of a sodium sphere in
vacuum with diameter 2R = 10 nm as a function of energy h̄ω,
calculated within the GNOR model (black line) and in the LRA (red
dash-dotted line). (b) Same as (a) but for a silver sphere. The
electron beam follows a straight-line trajectory with a distance of
b − R = 1 nm from the surface of the particle (see the schematic
inset). The kinetic energy of the electron is 120 keV. The calculation
is based on code by Christensen [128].

strongly localized to the surface of the particle, and therefore
are more affected by the nonlocal smearing of the induced
charges. Yan [97] provided the first theoretical observation
and explanation of a l-dependent blueshift in the hydrodynamic
model, while the l-dependent broadening, which is inherent for
the GNOR model, is discussed here for the first time.

To exemplify the importance of higher-order modes and
the l-dependent behavior of nonlocal response anticipated from
equation (38), we consider in figure 6 the electron energy-
loss (EEL) probability [43, 128] of a swift electron following
a straight-line trajectory near the surface of a spherical particle
with diameter 2R = 10 nm. The EEL probability is directly
comparable to the signal measured in EELS experiments. In
figure 6(a), we consider the EEL probability from a sodium
sphere, where the low-energy peak is due to the excitation
of the dipole mode (l = 1) while the high-energy peak is
due to the excitation of the quadrupole mode (l = 2) in
both the GNOR (black line) and LRA (red line) calculations.
As observed in the extinction cross section, the dipole mode
blueshifts and broadens in the GNOR model. Interestingly, we
see that the quadrupole mode experiences a larger blueshift and
linewidth broadening than the dipole mode, in accordance with
our discussion from the approximate relation in equation (38).
In figure 6(b) a silver sphere is considered, where the presence
of strong interband losses unfortunately dampens the higher-
order modes, leaving only a resonance peak due to the
excitation of the dipole mode. Other metals (in particular,
Al) or settings where nonlocal response effects on higher-
order plasmonic modes could be seen were discussed by
Christensen [128].

10



J. Phys.: Condens. Matter 27 (2015) 183204 Topical Review

Figure 7. (a) Sketch of an incident plane wave, which is polarized along the dimer axis, impinging on a dimer consisting of two identical
silver cylinders with radii R and gap size g. (b)–(c) Extinction cross section (in units of the cylinder diameter 2R) of a silver dimer in
vacuum with radius R = 15 nm for gap sizes varying from g = 30 Å (separated) to g = −30 Å (overlapping) in steps of 3 Å calculated
using the GNOR model and in the LRA, respectively. For clarity, each spectrum is displaced vertically by 3.5 normalized units. (d)–(e)
Electric-field enhancement in the center of the dimer gap for dimers with R = 15 nm as a function of energy h̄ω and gap size g calculated
using the GNOR model and in the LRA, respectively.

5.2. Cylindrical dimer

The plasmonic dimer, which consists of two metallic
nanoparticles in close proximity, has attracted a lot of interest
due to the plasmon hybridization [181, 182] occurring between
the two closely-spaced nanoparticles, which gives rise to
strongly gap-dependent resonance energies and electric-field
enhancements [183]. Such features have been utilized in
e.g. surface-enhanced Raman spectroscopy [184] and the
plasmon ruler effect [185]. The dimer has been subject
to intense theoretical and experimental studies. In the
simple LRA, diverging field enhancements in the gap of
the dimer are encountered in the extreme case of touching
dimers (i.e. no gap), which sets no limit to the number
of hybridized plasmon modes [177], thereby exciting an
continuum of modes [92, 93, 186]. These unphysical attributes
of the LRA are corrected in DFT [65, 67, 131, 132, 178] and
hydrodynamic [88, 92, 93] approaches due to the inclusion of
nonlocal response and electron spill-out (only DFT). Recent
measurements on dimers with subnanometer gaps using both
optical techniques [19, 22, 23, 25] and EELS [18, 187] show
lack of agreement with the LRA, and, in the touching case,
also display limits on the resonance energies of the bonding
plasmon modes. However, due to the indirect nature of the
measurements the explanation for the discrepancy between
LRA and the observed measurements is not conclusive with
possible interpretations being provided from both quantum
tunneling [65, 131] and nonlocal response [69] perspectives.

In this section, we consider a specific dimer geometry
consisting of two identical silver cylinders and vary the gap
from separated via touching to overlapping configurations, see
figure 7(a) for a schematic illustration. The dimer consists of
cylinders with radii of R = 15 nm and is excited by a plane
wave which is polarized along the dimer axis to strongly excite
the hybridized modes. We numerically calculate the extinction

cross section and the field enhancement in the gap of the dimer
in the frameworks of the LRA and the GNOR model by using
the freely available COMSOL implementation of the nonlocal
equations (www.nanopl.org) [88].

To clearly convey the results of the optical spectra in
figures 7(b) and (c), we first discuss the plasmon hybridization
occurring in the dimer system. When two cylinders are
positioned in close proximity, their modes hybridize to form
new plasmon modes, which can show up as resonances in the
extinction cross section [182]. For large separation distances,
the first modes to hybridize are the individual dipolar modes
(angular momentum l = 1) of the cylinders to produce a
lower-energy (with respect to the individual dipolar mode)
bonding dipolar mode (BDP) and a higher-energy antibonding
dipolar mode. Since the net dipole moment of the antibonding
mode is zero, this mode will be optically dark and not show
up in the extinction cross section. We therefore leave out
further discussion of the antibonding modes. As the dimer
separation decreases the plasmon hybridization increases and
the resonance energy of the bonding dipolar mode decreases.
Furthermore, with decreasing separation distance higher-order
modes of the individual cylinders (i.e. l > 1) begin to
hybridize as well. As an example the quadrupole mode
of the individual cylinders hybridize to form bonding and
antibonding quadrupole modes. Thus, in nanometer-proximity
the dimer spectra can be quite complex and show multiple
resonances due to the hybridization between many modes of
the individual cylinders.

With this plasmon hybridization picture in mind, we
consider now in detail the extinction cross section of a silver
dimer in the LRA and GNOR theory, see figures 7(b) and
(c), respectively. We vary the dimer gap from g = 30 Å
(separated dimer) via touching configuration to g = −30 Å
(overlapping dimer). We begin our discussion by considering
the LRA results (figure 7(c)) for a dimer separated by a gap
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of 30 Å. The lowest-energy and strongest peak is due to the
BDP, while the next peak is actually due to two spectrally-close
modes, the bonding quadrupole mode (BQP) and a higher-
order mode (HOM). Of these two modes, the BQP has the
largest amplitude and lowest energy. The electric field of the
HOM is concentrated at the edges of the dimer (and not in the
gap, like the BDP and BQP), making it spectrally insensitive
to the gap size. As the gap decreases, the BDP and BQP
redshift and additional bonding-mode resonances appear due
to the increased plasmon hybridization. In fact as g → 0
the bonding modes continue to redshift and the number of
bonding modes increases without bound till a continuum of
modes is found in the touching configuration g = 0 [92, 93].
The extinction cross section calculation for g = 0 does not
converge in the LRA, which is why the spectrum is not present
in figure 7(c). When the dimers overlap the nature of the
resonant modes changes and can no longer be considered as
bonding modes. In particular, the induced charges pile up at
the sharp edges of the junction of the overlapping dimer [186].
The interaction between the induced charges gives rise to the
several resonances seen for e.g. g = −6 Å, which are denoted
charge transfer plasmons (CTPs). As the overlap increases,
the sharp edges at the junction smoothen and the interaction
between the surface charges decreases, leading to a blueshift of
the resonances. The spectrum of the overlapping dimer begins
to increasingly resemble that of an elongated particle.

Turning our attention now to the results of the GNOR
model in figure 7(b), we find that the separated dimers
show less redshift with decreasing gap size compared to the
results in the LRA. The size-dependent blueshift and linewidth
broadening of the plasmon resonances observed in a spherical
nanoparticle (see section 5.1) translates into a gap-dependent
blueshift and linewidth broadening for the bonding modes
of the dimer. The gap-dependent blueshift counteracts the
redshift due to plasmon hybridization, leading to a finite
resonance energy and finite number of bonding modes in the
touching limit g = 0 (pink curve in figure 7(b)). Furthermore,
the increase in blueshift and linewidth broadening with
angular momentum observed for the spherical particle (see
section 5.1.4) manifests itself in the dimer spectra as an
increased blueshift and broadening for higher-order bonding
modes. Thus, the BQP experiences a stronger blueshift
and broadening than the BDP, leading to a weaker plasmon
hybridization for the BQP than the BDP. This is also the reason
for the lower number of resonances in the GNOR spectra of
close-proximity and short-overlap dimers compared to those
of the LRA. For the overlapping dimers (g < 0) the strength of
the resonant modes is weaker in the GNOR calculations than
in the LRA due to the nonlocal smearing of the surface charges
at the geometrically sharp edges of the dimer junction.

Besides examining the extinction cross section of the
dimer, we also study the electric-field enhancement present
in the center of the dimer gap in figures 7(d) and (e). Here,
we find that the GNOR model shows a significant decrease
in the electric-field enhancement compared to the LRA [88].
While the field enhancement in the LRA increases without
bound with decreasing gap size [186], the GNOR model
shows an amplitude- and frequency-dependence of the field

enhancement in agreement with DFT simulations [65, 131,
177] and other models based on quantum tunneling [188–191]
for gaps above 5 Å.

Many of the recent experimental observations on dimers
in subnanometer proximity have been interpreted in a quantum
tunneling framework [18, 19, 25] by comparing measured
spectra with theoretical spectra simulated using DFT [65] (or
other quantum tunneling based models [188, 189]). But as
discussed in this section, the GNOR model (which does not
take into account electron spill-out) produces very similar
far-field spectra (e.g. extinction cross section) as DFT-based
modeling. Thus, the experimental spectra could easily also
be interpreted as signatures of nonlocal response. To actually
distinguish the GNOR model from quantum tunneling models
(or in general theoretical models which include electron spill-
out and the overlap of such), one is required to study the
extreme near-field, such as the electric-field enhancement, to
positively separate the effects. As far as we know, only the
experimental observations of Zhu [22] and Hajisalem [23] have
shown signs of a decrease in the electric-field enhancement
when the dimer separation is smaller than 5 Å, which seems
to be in agreement with the onset of the overlap of electron
spill-out [131]. At these narrow gap sizes, where the overlap
of electron spill-out is significant, the approximation of a hard-
wall boundary condition in the GNOR model is no longer
accurate, thereby setting a limit for the applicability of the
model (approximately 5 Å for a vacuum gap).

5.3. Core-shell nanowire

By modifying the structure of the metal nanoparticle to have
a dielectric core with a metal shell, an increased tunability
of the localized SP resonances (LSPRs) is achieved due to
the plasmon hybridization of the inner and outer surfaces of
the metal. Especially the spherical core-shell structure has
received a considerable amount of attention [192–195] due to
its excellent and tunable sensing properties [196], which have
been utilized in biological studies such as cancer therapy [197].
The plasmon hybridization allows one to position the LSPR of
the nanoshell as desired by simply varying the core size R1

and/or outer radius R2 appropriately [198].
The hybridization of the inner and outer surface plasmons

increases when the metal shell becomes thinner [198], which
gives rise to significantly altered LSPRs compared to usual
homogeneous metal nanoparticles, such as the sphere in
section 5.1. In section 5.2 we showed that the effect of
nonlocal response increases with decreasing gap size (i.e.
increasing hybridization). We would therefore anticipate a
strong signature of nonlocal response in the core-shell particle,
since it features an ultra-thin metallic shell with resulting strong
plasmon hybridization.

To study the impact of nonlocal effects in the core-shell
geometry, we consider an infinite cylindrical nanowire with a
dielectric core and a thin metal shell excited by a plane wave,
see figure 8(a) for an illustration. By extending the nonlocal
Mie theory for cylinders [199] to core-shell structures, we
can analytically determine the extinction cross section taking
into account nonlocal response in the thin metal shell and
retardation effects [98].
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Figure 8. (a) Sketch of a plane wave impinging on a core-shell
cylinder of inner radius R1 and outer radius R2. The permittivity of
the core is εcore = 1.52, applicable for silica, and the metal shell is
silver. (b)–(c) GNOR result of the imaginary part of the induced
charge density of a silica-silver cylinder with R1 = 15 nm and
R2 = 18 nm at the resonance energies h̄ω = 1.96 eV and
h̄ω = 3.81 eV corresponding to the bonding and antibonding dipole
modes, respectively. (d)–(e) Color plots of the extinction cross
section (in units of outer cylinder diameter 2R2) of a silica-silver
cylinder in vacuum as a function of energy h̄ω and shell thickness
t = R2 − R1 calculated using the LRA and GNOR models,
respectively. The inner radius is R1 = 15 nm.

We focus on a particular design, consisting of an insulating
core with permittivity εcore = 1.52 corresponding to silica,
inner radius of R1 = 15 nm, and a thin silver shell. We are
interested in studying the optical response of the core-shell
nanowire when varying the shell thickness t = R2 − R1

by changing the outer radius R2. Figures 8(d) and (e)
shows the extinction cross section as a function of energy and
shell thickness in the LRA and GNOR model, respectively.
Considering first the LRA result, we see that the extinction
cross section is dominated by two resonances: a strong low-
energy resonance due to the bonding dipole mode (red line) and
a weaker high-energy resonance due to the antibonding dipole
mode (blue line) [198]. The bonding mode redshifts strongly
for decreasing shell thickness, while the antibonding mode
blueshifts only slightly. Both shifts are due to the increase
in plasmon hybridization with decreasing shell thickness. We
note that a strong tunability of the bonding mode with shell
thickness is present, allowing for tailoring of the optical
response. When we consider the result from the GNOR
theory (figure 8(e)), we find quite surprisingly the same optical
response as in the LRA for the bonding mode (in stark contrast
to the dimer geometry in section 5.2). In particular, we
see no significant size-dependent resonance shift or linewidth

broadening for the bonding mode as encountered for the
sphere and dimer geometries, even in the extreme case of a
1 nm thin shell. However, the antibonding mode shows an
increased blueshift and a size-dependent broadening effect due
to nonlocal response.

To find an answer to this surprising lack of presence
of nonlocal response in the bonding mode, we consider in
more detail the plasmon hybridization occurring in the core-
shell geometry. In particular, we are interested in how the
induced charges of the bonding and antibonding dipole modes
in figures 8(d) and (e) are distributed. Figure 8(b) displays
the induced surface charge distribution of the bonding dipole
mode of the core-shell cylinder, which shows that the negative
and positive induced charges are isolated to each side of the
cylinder, thus separated by a distance of approximately the
inner cylinder diameter, i.e. 2R1 = 30 nm for the design
considered in figure 8. The smearing of induced charges over
Ångstrom length scales due to nonlocal response will therefore
not play a significant role on the optical response of the bonding
plasmon mode, since the positive and negative induced charges
are separated by much greater distances than the smearing
length scale. In contrast, the strong effect of nonlocal response
in spheres and dimers occur due to the induced positive and
negative charges coming in close proximity when the particle
diameter and dimer gap, respectively, are decreased. However,
the antibonding mode of the core-shell geometry has induced
positive and negative charges on each side of the thin metal
shell (figure 8(c)), which explains why nonlocal effects play a
prominent role for this mode when the metal shell is sufficiently
thin.

6. Outlook

6.1. Electron spill-out effect

The nonlocal hydrodynamic and the GNOR models are the
natural immediate extension to the usual Drude model for
the theoretical modeling of metals. We emphasize that the
difference between the nonlocal response models (that is, with
hard-wall ABC and homogeneous equilibrium electron density
n0) and the LRA is how we model the induced charges, i.e. the
charges occurring due to an exciting electric field. In the LRA
the induced charges reside only on the geometric surface of the
metal structure, while the inclusion of nonlocal response serves
to smear out the induced surface charges on the Ångstrom
length scale. The main shortcoming of the nonlocal models
is the inaccurate treatment of the free electrons at the metal
surface in the absence of an exciting electric field, i.e. the
ground-state equilibrium electron density. As discussed, the
free electron density is modeled as being constant inside the
metal and then abruptly dropping to zero outside the metal
(i.e. step profile). From the pioneering work on density-
functional theory by Lang and Kohn [200], we know that
the equilibrium electron density should be smoothly varying
at the metal-vacuum interface, with Friedel oscillations inside
the metal and electron spill-out just outside the metal [58]. The
strength of current DFT treatments of metals is the inclusion of
a self-consistent treatment of the equilibrium electron density.
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Studying the effects of a spatially-varying electron density in
the LRA has been performed [201], however with the neglect
of nonlocal gradient effects [202]. Recently, David [203],
Toscano [179] and Yan [204] have shown that it is also
possible to take into account a smoothly-varying equilibrium
electron density in the hydrodynamic model, thus overcoming
the discussed limitations of the hard-wall nonlocal models.
Expanding this approach to include diffusion should not pose
significant complications, but has yet to be done.

6.2. Metamaterials

Metamaterials are man-made engineered materials that can
manipulate and mold electromagnetic waves in ways that are
not attainable with naturally available materials [205]. A few
examples of the functionalities that have been attained with
metamaterials include the cloaking of macroscopic objects
and negative refraction [32, 206–208]. Such properties have
been designed using the theory of homogenization. Effects
due to nonlocal response could come into play for optical
metamaterials on two levels: firstly, in the response of
the individual elements (metaatoms) as their overall sizes
have to be considerably smaller than the wavelength of
light, and secondly, in the arrangement of these elements at
deeply subwavelength distances which enhances their nonlocal
electromagnetic interaction.

While the homogenization procedure is quite complicated
even in the LRA [209], some metamaterials have shown to be
able to exhibit effects due to spatial dispersion stemming from
the homogenization procedure (and not from the individual
metaatoms) [210–214], yet the connection to the description
of the intrinsic spatial dispersion found in metals has not
been made. It would be beneficial to be able to use the real-
space constitutive relations derived in sections 3 and 4 to also
describe metamaterials with artificial spatial dispersion. This
may allow a pathway for engineering spatial dispersion using
metamaterials on a length scale significantly larger than the
nonlocal length scale found in naturally occurring metals.

6.3. Doped semiconductors and 2D materials

Other free-carrier systems than metals, such as doped
semiconductors [215] or the 2D material graphene [216, 217],
provide an alternative powerful platform to study nonlocal
effects of plasmons as these materials typically allow for
easier tuning of the free-carrier density n0. We note that
the hydrodynamic nonlocal length scale scales as (for 3D
materials) ξ ∝ vF/ωp ∝ n

−1/6
0 , which signifies a strong

dependence of nonlocal effects with the free-carrier density.
While nonlocal effects in excitons in semiconductors is a well-
known topic [218–221], the search for nonlocal effects in
plasmons of graphene and doped semiconductors has just been
initiated [222–225].

6.4. Experimental ideas

Although there have been quite some studies of surface
plasmon resonances in individual nanoparticles, showing e.g.
a blueshift and broadening of the LSPR with decreasing

particle size, the focus has mainly been on noble metals
on substrates or in inert gases. We suggest to expand this
study to include nanoparticles of different metals (e.g. Al)
embedded in insulating materials. For studying the size-
dependent resonance behavior, EELS would be a suitable
technique due to the excellent spatial and spectral resolution.

Another interesting system to see features of nonlocal
response is the metallic dimer. In this system, care must
be taken since Ångstrom-sized gaps (more precise, below
5 Å) show signs of decreasing field enhancement in the gap
of the dimer [22, 23], which is in contrast to expectations
from the GNOR theory (see section 5.2). However, strong
nonlocal effects are still present for gap sizes above 5 Å, where
tunneling is not expected to play a role, so this makes the
dimer indeed a good candidate. Additionally, the possible
use of EELS to study dimers gives access to the dark modes
of the system, which are also strongly gap-dependent and
influenced by nonlocal response. In any case, it would also be
interesting to reinterpret the existing experimental studies on
dimers [18, 19, 22, 23, 25] using numerical calculations from
the GNOR model to verify the applicability and accuracy of
the nonlocal model.

The study of nonlocal effects in propagating SP modes is
also of interest. In particular, continuous and homogeneous
metal films support long-range SP modes [226, 227] which
can be affected by nonlocal response for very small
thicknesses [111, 112]. Ultra-thin metal films supporting SP
modes with long propagation lengths constitute an interesting
system for measuring effects due to nonlocal response, since
additional effects due to quantum tunneling, as in the dimer
geometry, can be immediately ruled out.

7. Conclusions

We have provided a comprehensive overview of the current
status of both experimental and theoretical studies on nonlocal
response in plasmonic nanostructures. The real-space
constitutive relations relating the current density in metals
to the electric field have been derived and discussed for the
hydrodynamic and GNOR models. The GNOR model has
been shown to be an extension of the hydrodynamic model
by including currents due to electron diffusion. The main
feature of nonlocal response is the inclusion of longitudinal
waves in the metal, which gives rise to smearing of the induced
charge density on the Ångstrom length scale. We have shown
that, regardless of the geometry, only plasmonic modes which
have negative and positive induced charges separated by a
distance comparable to the smearing length scale, are affected
by nonlocal response. In particular, the resonant plasmonic
Mie modes supported by a spherical particle experience a
blueshift and linewidth broadening as the particle diameter
decreases. The same mechanism gives rise to a gap-dependent
blueshift and linewidth broadening of the bonding modes of the
dimer. In relation to experiments on dimers with nanometer-
sized gaps, we find that the GNOR model describes the
experimentally-measured spectra, without the need of invoking
the quantum mechanical effect of tunneling. For the core-
shell geometry, we find that only the antibonding (and not
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the bonding) dipole mode is affected by nonlocal response.
Finally, we have presented several theoretical approaches and
experimental setups to unveil and measure further effects due
to nonlocal response.
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[27] Rakić A D, Djurišić A B, Elazar J M and Majewski M L 1998

Appl. Opt. 37 5271

[28] Hao F and Nordlander P 2007 Chem. Phys. Lett. 446 115
[29] Maier S A 2007 Plasmonics: Fundamentals and

Applications (New York: Springer)
[30] Aizpurua J, Hanarp P, Sutherland D S, Käll M, Bryant G W

and Garcı́a de Abajo F J 2003 Phys. Rev. Lett. 90 057401
[31] Garcı́a de Abajo F J 2007 Rev. Mod. Phys. 79 1267
[32] Ergin T, Stenger N, Brenner P, Pendry J B and Wegener M

2010 Science 328 337
[33] Ritchie R H 1957 Phys. Rev. 106 874
[34] Nelayah J, Kociak M, Stephan O, Garcı́a de Abajo F J,

Tence M, Henrard L, Taverna D, Pastoriza-Santos I,
Liz-Marzan L M and Colliex C 2007 Nat. Phys. 3 348

[35] Bosman M, Keast V J, Watanabe M, Maaroof A I and
Cortie M B 2007 Nanotechnology 18 165505

[36] Schaffer B, Hohenester U, Trügler A and Hofer F 2009 Phys.
Rev. B 79 041401

[37] Koh A L, Fernández-Domı́nguez A I, McComb D W,
Maier S A and Yang J K W 2011 Nano Lett. 11 1323

[38] Nicoletti O, Wubs M, Mortensen N A, Sigle W, van Aken P
A and Midgley P A 2011 Opt. Express 19 15371

[39] Husnik M, von Cube F, Irsen S, Linden S, Niegemann J,
Busch K and Wegener M 2013 Nanophotonics 2 241

[40] Raza S, Stenger N, Pors A, Holmgaard T, Kadkhodazadeh S,
Wagner J B, Pedersen K, Wubs M, Bozhevolnyi S I and
Mortensen N A 2014 Nat. Commun. 5 4125

[41] Hofmann C E, Vesseur E J R, Sweatlock L A, Lezec H J,
Garcı́a de Abajo F J, Polman A and Atwater H A 2007
Nano Lett. 7 3612

[42] Kuttge M, Vesseur E J R, Koenderink A F, Lezec H J,
Atwater H A, Garcı́a de Abajo F J and Polman A 2009
Phys. Rev. B 79 113405

[43] Garcı́a de Abajo F J 2010 Rev. Mod. Phys. 82 209
[44] Schnell M, Garcı́a-Etxarri A, Huber A J, Crozier K, Aizpurua

J and Hillenbrand R 2009 Nat. Photon. 3 287
[45] Chen J et al 2012 Nature 487 77
[46] Duan H, Fernández-Domı́nguez A I, Bosman M, Maier S A

and Yang J K W 2012 Nano Lett. 12 1683
[47] Kreibig U and Genzel L 1985 Surf. Sci. 156 678
[48] Kreibig U and Vollmer M 1995 Optical Properties of Metal

Clusters (Berlin: Springer)
[49] Baida H et al 2009 Nano Lett. 9 3463
[50] Kreibig U and von Fragstein C 1969 Z. Phys. 224 307
[51] Apell P and Penn D R 1983 Phys. Rev. Lett. 50 1316
[52] Uskov A V, Protsenko I E, Mortensen N A and O’Reilly E P

2014 Plasmonics 9 185
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[168] Bréchignac C, Cahuzac P, Kebı̈li N, Leygnier J and Sarfati A

1992 Phys. Rev. Lett. 68 3916
[169] Liebsch A 1993 Phys. Rev. B 48 11317
[170] Monreal R C, Antosiewicz T J and Apell S P 2013

New J. Phys. 15 083044
[171] Gaudry M et al 2003 Phys. Rev. B 67 155409
[172] Scaffardi L and Tocho J 2006 Nanotechnology 17 1309
[173] Kolwas K and Derkachova A 2013 J. Quant. Spectrosc.

Radiat. Transfer 114 45
[174] Myroshnychenko V, Rodrı́guez-Fernández J,

Pastoriza-Santos I, Funston A M, Novo C, Mulvaney P,
Liz-Marzán L M and Garcı́a de Abajo F J 2008
Chem. Soc. Rev. 37 1792

[175] Ljungbert Å and Apell P 1983 Solid State Commun. 46 47
[176] Apell P, Monreal R and Flores F 1984 Solid State Commun.

52 971
[177] Raza S, Wubs M, Bozhevolnyi S I and Mortensen N A 2015

Opt. Lett. 40 839
[178] Andersen K, Jensen K L, Mortensen N A and Thygesen K S

2013 Phys. Rev. B 87 235433
[179] Toscano G, Rockstuhl C, Evers F, Xu H, Mortensen N A and

Wubs M 2014 arXiv:1408.5862
[180] Garcı́a de Abajo F J 1999 Phys. Rev. B 59 3095
[181] Prodan E, Radloff C, Halas N and Nordlander P 2003 Science

302 419
[182] Nordlander P, Oubre C, Prodan E, Li K and Stockman M I

2004 Nano Lett. 4 899
[183] Thongrattanasiri S, Koppens F H L and Garcı́a de Abajo F J

2012 Phys. Rev. Lett. 108 047401
[184] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I,

Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[185] Jain P K, Huang W and El-Sayed M A 2007 Nano Lett.

7 2080
[186] Romero I, Aizpurua J, Bryant G W and Garcı́a de Abajo F J

2006 Opt. Express 14 9988
[187] Kadkhodazadeh S, Wagner J B, Kneipp H and Kneipp K

2013 Appl. Phys. Lett. 103 083103

[188] Esteban R, Borisov A G, Nordlander P and Aizpurua J 2012
Nat. Commun. 3 825

[189] Haus J W, de Ceglia D, Vincenti M A and Scalora M 2014
J. Opt. Soc. Am. B 31 259

[190] Haus J W, de Ceglia D, Vincenti M A and Scalora M 2014
J. Opt. Soc. Am. B 31 6

[191] Scalora M, Vincenti M A, de Ceglia D and Haus J W 2014
Phys. Rev. A 90 013831

[192] Brongersma M L 2003 Nat. Mater. 2 296
[193] Raschke G et al 2004 Nano Lett. 4 1853
[194] Nehl C L, Grady N K, Goodrich G P, Tam F, Halas N J and

Hafner J H 2004 Nano Lett. 4 2355
[195] Tam F, Moran C and Halas N J 2004 J. Phys. Chem. B

108 17290
[196] Kabashin A, Evans P, Pastkovsky S, Hendren W, Wurtz G,

Atkinson R, Pollard R, Podolskiy V and Zayats A 2009
Nat. Mater. 8 867

[197] Bardhan R, Lal S, Joshi A and Halas N J 2011 Acc. Chem.
Res. 44 936

[198] Prodan E and Nordlander P 2004 J. Chem. Phys. 120 5444
[199] Ruppin R 2001 Opt. Commun. 190 205
[200] Lang N D and Kohn W 1970 Phys. Rev. B 1 4555
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