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Abstract

A new approach for analytically solving quantum nonlinear Langevin equations is proposed and
applied to calculations of spectra of superradiant lasers where collective effects play an important
role. We calculate lasing spectra for arbitrary pump rates and recover well-known results such as
the pump dependence of the laser linewidth across the threshold region. We predict new sideband
peaks in the spectrum of superradiant lasers with large relaxation oscillations as well as new
nonlinear structures in the lasing spectra for weak pump rates. Our approach sheds new light on
the importance of population fluctuations in the narrowing of the laser linewidth, in the structure
of the lasing spectrum, and in the transition to coherent operation.

1. Introduction

Progress in various technologies has enabled considerable size reductions of lasers. Nowadays quantum dot
photonic crystal [1-7], micropillar [8—10], plasmonic [11] and other kinds of nanolasers [12] are
intensively investigated. This research is motivated by fundamental questions, such as the minimum size of
lasers and the role of quantum effects. The miniaturization of nanolasers is also driven by applications, in
nano-electronics for example, where energy-efficient nanolasers are directly incorporated into nano-chips
[13—15]. The high density of photon states in nanocavities leads to Purcell enhancement [16] of
spontaneous emission into the nanolaser mode, large gain and to the rapid increase of laser power even at
small pump rates.

Nowadays there is great interest in superradiant lasers, which are lasers that combine a large gain with a
small cavity operating in the so-called bad-cavity regime [17—19]. In this regime, the polarization cannot
necessarily be adiabatically eliminated and collective spontaneous emission into the lasing mode is
significant. Superradiant lasers have been experimentally realized, for example with cold alkaline earth
atoms [20-23], rubidium atoms [24], and with quantum dots [25] as the active medium. Superradiant
lasers are less sensitive to cavity-length fluctuations, which is important for atomic clocks [20, 21, 24].
Superradiance leads to interesting collective effects, such as excitation trapping [22, 24] and superthermal
photon statistics [10, 25, 26], with possible applications in high-visibility optical imaging [27].

An analytical description of superradiant nanolasers and their spectra is complicated by the facts that
their quantum noise is not a perturbation, that the equations are nonlinear, and that the polarization of the
active medium cannot be adiabatically eliminated. We will address these issues in this paper, where we
present an analytical approach to understanding superradiant lasers.

The quantum theory of lasers began with applications of methods of classical statistical radio-physics
first for lasers comprising a cavity with high quality (Q) factor [28—30] and later also for low-Q cavity lasers
[31, 32]. In many papers the fluctuations of amplitude and phase of laser radiation are considered
separately, in the frame of rate equations, where the active-medium polarization is adiabatically eliminated
[33-37]. This approach is satisfactory for usual semiconductor lasers and leads to various analytical results,
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but the approximations leading to the usual rate equations are not always justified for superradiant
nanolasers.

Presently nanolasers are theoretically modeled either by rate equations as in [37, 38], by numerical
solution of the density matrix equations as in [22, 39—41], or by systems of equations for correlations as in
the cluster expansion [25, 42] or cumulant expansion [43, 44] methods. Numerical analysis of superradiant
emission and lasing has recently led to new and interesting results, such as mechanical effects in
photon—atom interactions [45], lasing with a millihertz linewidth and rapid emitter number fluctuations
[46], Wigner functions for semiconductor heterostructures [47], transition from superradiance to regular
lasing by varying the coherent and incoherent driving [44], sub- and superradiance in multimode optical
waveguides [48], and photon-antibunching in the fluorescence from an optical nanofiber-tip [49]. However,
complementary analytical methods to model nanolasers without adiabatic elimination of polarization, that
would apply to superradiant nanolasers, are not well developed.

Here we use Heisenberg—Langevin equations, which are very convenient for the description of lasers
[50], to describe systems ranging from LEDs to superradiant nanolasers. The method also describes the
limit of non-superradiant lasers, where it will reproduce some well-known results. We follow the approach
by Lax, see for example reference [32]: operators are treated as stochastic variables, while quantum
properties such as non-vanishing commutation relations are taken into account by diffusion coefficients.

Our first new application of the method will be the description of both the lasing field and the
active-medium polarization by symmetric (S) and anti-symmetric (A) combinations of quadrature
operators. Quadratures of the polarization have been used in Lamb’s semiclassical laser theory [30], while
quadratures of the electromagnetic field were used, for example, in the analysis of the driven Van der Pol
oscillator applied to lasers in [36] and in quantum optics to squeezed states of the radiation field [50].
Symmetric and anti-symmetric combinations of the quadratures of a quantum field are also used in
entanglement criteria [51, 52]. Our work is an extension since, to our knowledge, quadratures as well as
their S/A combinations for both the lasing field and polarization combined have not been used in laser
theory before. The approach has several advantages: it does not require a quantum phase operator [53], and
turthermore we find the equations for the S/A quadrature combinations less cuambersome than for the
density matrix [50].

Our second new application is the linearization of the quantum Langevin equations, where fluctuations
are not necessarily small compared to mean values. This goes beyond a small-signal analysis (SSA) as, for
example, in references [36, 54, 55] and requires other approximations. We describe our method in detail,
and it may be useful also for other physical systems with resonant nonlinear interactions of light with
matter, see examples in reference [56].

Section 2 introduces the quantum Maxwell-Bloch equations (MBE) with dissipation for a two-level
laser and we rederive some key results of semiclassical laser theory [50, 57] to be used for comparison later
in the paper.

In section 3 we demonstrate a method, used before in [58, 59], for approximately solving the nonlinear
quantum MBE by use of a Fourier transform. With this method, we extend the semiclassical approach by
taking into account spontaneous emission into the lasing mode below the semiclassical threshold, where
population fluctuations can be neglected. In subsequent sections we do take population fluctuations into
account. We obtain the expression for the laser linewidth as a function of the population inversion, as in
[59], reproduce the well-known laser linewidth at small excitation, as in [57] and derive the beta-factor for
bad-cavity lasers, as in [38], three results to illustrate the efficiency of our method.

Sections 4—6 are the main parts of the paper. In section 4 we represent the lasing field and polarisation
by the S- and A-combinations of quadrature-operators, and derive the central linear equations of our
approach. We will show that in linear approximation only the S-combinations interact with population
fluctuations, while the A-combinations do not. We justify the approximations made to linearize the initial
nonlinear MBE.

In section 5 we solve the equations for the A-combinations, show that they describe the laser output
power and the linewidth in the high-pump limit, and reproduce the formula for the laser linewidth in that
limit.

In section 6 we derive expressions for lasing spectra and show examples of the analysis of spectra for
superradiant and non-superradiant lasers. The final two sections contain discussions and our conclusions.

The novelty of our method is that we analytically describe the laser below, near and above the threshold
by the same set of stochastic equations, taking into account the field, polarisation and population quantum
fluctuations, spontaneous emission into the lasing mode and full laser dynamics without adiabatic
elimination of polarization. Such accurate treatment is in particular important for superradiant lasers,
where collective effects among the emitters need to be taken into account. With our method we reproduce
well-known results and identify features, in particular in the laser spectra, that largely went unnoticed. In
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Figure 1. Scheme of the two-level laser, with parameters and operators as defined in the main text. It is common to assume that
71 > 25,7 so that the polarization can be adiabatically eliminated and the laser is well described by rate equations. This does
not work for the superradiant nanolasers considered here, where v, < 2k.

particular, we calculate the full spectrum of the lasing field below as well as above threshold and identify
and explain the appearance of a broad spectral background above threshold and a multi-peak structure

above and below threshold. In particular, we focus on the role of population fluctuations and nonlinear
polarisation dynamics in superradiant lasers.

2. Quantum Maxwell-Bloch equations. Semiclassical laser model

In order to keep the analysis simple, we consider a stationary single-mode laser, shown schematically in
figure 1, with a large number Ny > 1 of homogeneously broadened identical two-level emitters, with their
transition frequency wy equal to the cavity mode frequency. We write the quantum MBE for such a laser
[50] in the rotating-wave approximation with carrier frequency wy,

a=—ra+ Q0 +E, (1a)
b= —(y1/2)0 + QofaN + E, (1b)
N, = —Qo(atd + 0 a) + v (PNg — N,) + By, (1¢)

Here a is the annihilation operator of the laser cavity mode, the operator o = iZfl:Ol fioi describes the
polarization of the emitters, 6; describes transitions from the excited to the ground state of the ith emitter;
f; characterizes the coupling of the ith emitter to the lasing mode. We also define the average square
coupling f = N, '>".f*. Furthermore, €2 is the vacuum Rabi frequency and the total excited- and
ground-state population operators N og are defined as the sums ZNolflEe’g), where 71¢ (71%) are operators of
populations of excited (ground) states of the ith emitter. The operator N = N, — N, ¢ is then the population
inversion. In general we use ‘hats’ to denote operators, while mean values of operators are indicated by the
absence of a hat, for example (N) = N. We will consider the stationary case, so mean values do not depend
on time. The laser field leaves the cavity through the mirror at the cavity decay rate 2x; 7 is the population
relaxation rate of the upper lasing level, v P is the pump rate from the lower to the upper level; v, /2 is the
polarization relaxation rate (so that v, is the width of the lasing transition). The total number of emitters is
assumed preserved, N, + Ng = Ny, SO we can rewrite Ng =N, — N,and N = 2N, — N,.

The quantum operators in equation (1) are interpreted as stochastic variables, where Langevin forces
and their associated correlation strengths ensure correct quantum properties. In more detail, we introduced
the Langevin forces F,,, with « taken from the set {a,v, at vt N.}. These describe white noise, have zero
mean (i.e. (F,) = 0), and are delta-correlated in time: <F(,(t)ﬁ5(t/ )) = Dupd(t — t'), where D, are the
diffusion constants. In the Fourier-domain the cross-correlation of these Langevin forces is given by

=

(Fo(w)Fs(w')) = 2Dupb(w + ). (2)
From equation (1a) and its Hermitian conjugate we then obtain
0= —2rn+ Q((atd) + (0T a)), (3)

in terms of the stationary mean photon number n = (a™a). In combination with equation (1c) we can
eliminate the atom-field correlations and obtain the energy conservation law

2kn + v Ne = v PNg. (4)

Stationary solutions of equation (1) are readily obtained, if we neglect the Langevin forces and replace
operators by c-numbers: a — a,  — v, N — N. This gives the conventional stationary equations for the
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stationary solutions of the semiclassical laser model [50]

0= —kra+ Qv (5a)
0= —(v./2)v+ QufaN (5b)
0= —O(a"v+v'a) + v (PNy — N,). (5¢)

Equations (5a) and (5b) have non-vanishing solutions if
N > Nu = k7./ %) (6)

From the energy conservation law (4), we find the stationary number of photons in the semiclassical model
to be 5
n= L (No+ Nu)(P/Ps, — 1). ()

So the semiclassical model predicts lasing, #n > 0, when Ny > Ny, and when the dimensionless pump rate P
exceeds the semiclassical lasing threshold Py,

P> Py = (N +Nth)/(No — Nu). (8)

For a dimensionless pump rate P smaller than Py, lasing is absent and # = 0 in the semiclassical laser
model.

3. Analysis neglecting population fluctuations

Nanolasers have large beta factors [60], so that spontaneous emission into the lasing mode is non-negligible
[2-5]. Below and close to the semiclassical threshold, nanolasers are not well described by the standard
semiclassical model, which neglects spontaneous emission and predicts zero photons. One can improve
upon this when v, > 2k, 7, in which case polarization can be adiabatically eliminated. This is typically
the case for semiconductor lasers. In this case, the laser can be described, for all pump rates, by quantum
rate equations (QRE) [38, 60, 61], that do take into account spontaneous emission into the lasing mode.
The intensity noise spectra can then also be found by SSA of the QRE [38].

In appendix A we show, following [62], that the condition 2/, > 1 in our model corresponds to high
inter-emitter correlations. So we take this inequality to be a requirement for the low-Q cavities of
superradiant lasers [17-19]. In appendix A we also show that lasing with our parameters is possible when
the beta-factor is of the order of 1. So here we will refer to nanolasers with 2x/v, > 1and 5 > 1 as
superradiant (SR) nanolasers. SR lasing may also be possible when 2x/~, and /3 are smaller than unity,
provided that inter-emitter correlations are still large. Here we use 2k/7, > 1 and 8 > 1 as sufficient
conditions for superradiant lasing.

Since the QRE cannot be applied to superradiant lasers with v, < 2k and the active-medium
polarization cannot be adiabatically eliminated, we must go beyond the QRE. In this section we do this in
the low-pump limit. We include the dynamics of the polarization, rather than to eliminate it adiabatically.

Following [58, 59], our main approximation will be that we neglect population fluctuations. This is a
good approximation for small pump rates, when the material gain is much smaller than the cavity loss, such
that fluctuations of the populations, and thereby of the material gain, do not significantly change the net
cavity gain [34]. We also take into account spontaneous emission into the lasing mode and introduce a
Fourier-expansion method that is used throughout the paper. We will reproduce the well-known formula
for the lasing linewidth in the low-pump limit and introduce the -factor for lasers with low-quality
cavities. These results will be used as a reference for comparison in the following sections, where we do take
population fluctuations into account.

Neglecting population fluctuations, we replace population operators in equation (1b) by their mean
values

Nog ~ Nog, N=N. 9)

Thereby equations (1a) and (1b) turn into a set of linear equations
a=—ka+ Qb +E, (10a)
b= —(y./2)0 + QofaN + F,. (10b)

We express a(t) and 0(t) and their corresponding Langevin forces through Fourier-component operators

alt) = \/%/Oool(w)e_i“” dw (11)

4
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(a)
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Figure 2. Optical spectrum n(w), obtained by neglecting population fluctuations, as given by equation (16). Parameter values:
2K = 1007, €29 = 347, No = 100. The scaled pump rates are P = 2, 4, 8, 10, and 16 for the curves labeled 1 through 5,
respectively. Panel (a): 7, = 7007, N. = 108 > Nj. The optical spectrum has only one peak. Panel (b): v, = 507,
N, = 2.7 < Ny. The optical spectrum has two peaks only for the curves 1 and 2, since only for these two are the pump rates P
below P, = 7.4.

for & = {a, 0, F,, F,}, and obtain from equation (10) linear algebraic equations for all a(w) and find from
them . .
(7L/2 = iw) Fa(w) + QoF, (w)

(iw — k) (iw —v1/2) — QN (12)

a(w) =

Coming back from a(w) to a(t) by an inverse Fourier-transformation, we calculate the mean number of

photons in the cavity as
o0

n={(at(ta()) = %/ n(w)dw, (13)

—00

where n(w) is the spectral power density of the field in the lasing mode, or optical spectrum, which is
related to a(w) as
(at(w)a(w")) = n(w)d(w + ). (14)

As a technical aside, in this paper we use Fourier-expansions in terms of exp(—iwt) for all operators, both
for & and for & for example. This is why we end up with the factor §(w + ') in equation (14) and in all
similar frequency-dependent correlations.

We will determine n(w) and then find n by equation (13). In order to find n(w) we must know the
relevant diffusion coefficients [54, 63]. After neglecting, as is usual, any thermal radiation in the lasing
mode, since kg T < hw, we take the diffusion coefficient 2D+, = 0. When population fluctuations are
neglected, the diffusion coefficient D+, becomes

2D1)+’I} :erLNE’ (15)




10P Publishing

New J. Phys. 23 (2021) 063010 I Protsenko et al

as shown in appendix B. With these diffusion coefficients, we find the optical spectrum

(571 /2)Ne/Nin

[(1 = N/Nw)(k571/2) = w?]? + w?(k + 71 /2)* (e

n(w) =

This spectrum may either have one or two peaks. Two peaks occur when all emitters are collectively and
strongly coupled to the lasing mode, under the condition

1 /2K
Ne=- (2422 ) N < Ny, (17)
2\vL 2K

and when P < P, where P, is such that N(P.) = —N,. The two peaks in n(w) are then caused by and a
signature of collective Rabi splitting (CRS) [59]. Otherwise, n(w) has a single peak, with full width at half
maximum 7y, defined by n(vy,,,/2) = n(w = 0)/2, with the value

_2"5+’YL - — > 1/2
o = = {r—1+Ve=1r+r} (18)

where the parameter r is given by
4Kk

r= m(l —N/Nth)

For r < 1, as obtained for pumping levels where N is close to Ny,, we expand equation (18) as a series in r

and to first order in r obtain ot
K+
Vas ~ fr:'}/c(l _N/Nth)> (19)

where v, = 2k, /(25 + v ). Examples of optical spectra calculated according to equation (16) are given in
figure 2, showing both cases of single- and double-peaked spectra.

Our goal in the remainder of this section is to express the linewidth +,,, in terms of familiar laser
parameters. In order to do so we first determine the population inversion N. (Incidentally, the same
procedure to calculate N will be used later again, when we also take population fluctuations into account.)
From equations (13) and (16) we find for the mean number of photons in the cavity

’YLNe
n= .
(26 +71)(Nw — N)

(20)

By inserting this into the energy conservation law (4), we obtain a quadratic equation for the population

inversion, .
Bc(No +N) = [P(Ng — N) — Ny — N](1 — N/Nu), (21)

where we introduced the parameters

Be=B/(1+2K/71), with (22a)
B =495 /(v 1) (22b)

following references [38, 60], respectively. In the special case 3. = 0 the two solutions of equation (21) for
N coincide with the stationary population inversion found in semiclassical laser theory. The general
solution of equation (21) with . # 0 is different, because the approach that led to equation (21) takes into
account spontaneous emission into the lasing mode. Indeed, in the limit 2/, — 0, the coefficient .
tends to B , which was introduced in reference [60] as the ratio of the rate of spontaneous emission into the
lasing mode to the rate of all other emission processes (i.e. background emission).

We note that the Langevin force F, in equation (10b) and in the equations below describes the
polarisation fluctuations that are responsible for spontaneous emission into the lasing mode. In the limit
2k /7, — 0 the solution (20) coincides with the solution of the laser rate equations derived in [60] where
spontaneous emission into the lasing mode is taken into account. The derivation of the extended laser rate
equations from equation (1) for arbitrary 2« and «, and including spontaneous emission into the lasing
mode is given in [62]. The stationary solution of such extended rate equations coincides with equation (20).

Solving equation (21), we find the pump-dependent population inversion N(P), given by
equation (Cla) of appendix C. By inserting N(P) into equation (18) we obtain an explicit expression for the
pump-dependent linewidth v,,((P). Similarly, by inserting N(P) into the energy conservation law (4) we
obtain the pump-dependent photon number #n(P), given in equation (C1b) of appendix C.
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We can now express the linewidth (19) in terms of the laser output power Wy = 2Kkhwon by using
equation (20) to express the factor (1 — N/Ny,) in terms of Wy, giving

2 2 hw
ma5=< ML )Ns 0, (23)

2K + pan P Wout

where Ny, = N, /Ny, is the so-called spontaneous-emission factor [64]. Equation (23) is the well-known
result for the laser linewidth below threshold, which (apart from notations) coincides with, for example,
results in references [57, 64].

It is generally accepted that the laser linewidth far above threshold is suppressed by a factor of two
compared to equation (23) [57]. We notice, though, that recent work [65] challenges this result, based on a
semiclassical analysis. In the next sections we will show that a fully quantum mechanical theory for the
lineshape far above threshold agrees with adding the extra factor of 1/2 to equation (23), and that it can be
ascribed to the effect of population fluctuations, in particular to relaxation oscillations induced by
population fluctuations.

4. Linearization of equations

Our aim is now to develop a theory for the optical spectrum applicable, in physically reasonable
approximations, to lasers at any pump rate, without making the assumption that fluctuations in the lasing
field and polarization are always small. Our linearization procedure is therefore, in some parts, different
from the standard SSA as presented, for example, in references [36, 37, 54, 55]. We will try to clearly
identify the approximations made.

We begin with the linearization of equation (1b) by writing the population operators as the sum of their
mean values N, and population fluctuations SN, o>

Ne,g - Ne,g + 6Ne,g) (SNg - —(5Ne, (24)

whereby the population fluctuations are defined. We consider a large number Ny > 1 of emitters and
suppose small fluctuations of populations (JN §,g>1/ 2 & N.4. We also suppose weak coupling,
ZQéf /7y <L and, for superradiant lasers, low-Q cavities with 2k > 7, . The mean photon number for
such a laser below and near the semiclassical threshold is of the order of unity or less, which we see in
figure 4(a). So we do not assume that fluctuations of the lasing field and polarisation are small compared to
their mean values.

We next insert equation (24) into equation (1) and obtain

a=—ka+ Qb+ E, (252)
b= —(71/2)0 + Qof (aN + 2a6N,) + F,, (25b)
0N, = —Q (iTa+ato— (iTa+ato)) — v (P + 1IN, + Ey,. (25¢)

We shall now show that instead of the conventional representation of the laser field in terms of amplitude
and phase, it is convenient to represent the field and polarization by their quadratures

Gy =(@+aN/V2, G =ilaT —a@)/V2, (26)

where & stands for a or 0. In our stochastic approach, d, are represented by real-valued stochastic
variables. The equations of motion for the quadratures follow from equation (25),

élx,p = _K/&x,p + QOﬁx,p + Fax,py (27a)
bxp = —(71/2)bxp + Qof (a:pN + 28,,0N,) + Fo (27b)
0N, = —Q (aydx + Bpix — (@b + Dpds)) — ¥ (P + 1IN, + Fy,. (27¢)

The Langevin forces in equations (27a) and (27b) are
Fo, = (Fa+F,+)/V2,  Fo =i(Fys — Fo)/V2,

where o stands for a or v.
Assume, at the beginning, a high pump rate of a laser. Well above threshold one can solve
Maxwell-Bloch equation (27) approximately, by SSA similar to the approach in [54, 55]. In SSA, the
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variables are replaced by the sums of large c-number parts and small time-dependent fluctuating parts. We
already have seen such a replacement in equation (24) for N,,. Now we similarly replace ., and 0., by

agy(t) = V/n+d, (28a)
V() = V40, (28b)

/

where @, U,

SSA.
We will use the SSA for MBE with care. Such SSA, just like the semiclassical solution of equation (5),
assumes the phase of the coherent part of laser field to be constant. This is why <&ff;,> = \/n. By contrast,

are the small fluctuations and the index ssa shows that the variables (28) correspond to the

the solutions of equation (27) have vanishing statistical averages, <Elx,p> = 0—due to the phase diffusion,
ignored by SSA of MBE. Phase diffusion cannot be ignored in our analysis. In particular, for high pump the
phase diffusion determines the laser linewidth [33, 35, 36, 66]. So the SSA of MBE is unsuited to describe
the optical spectrum and lineshape of a laser. This is why we will use the SSA only to linearize the nonlinear
terms in equation (27), related with population fluctuations. As we will see, the SSA is good approach for
calculations of population fluctuations.

The c-number /7 is chosen in equation (28a) in order to ensure that

(@) + (@) /2= n, (29)

where 7 is the mean number of photons in the laser cavity. In equation (29) we neglect the contribution of
the commutation relation of &, and 4, that is of order unity; we also neglect the small mean values of
squares of fluctuations in the high-excitation limit (n > 1).

One may expect that in equation (28), different c-numbers should be defined for the different
quadratures, instead of only 1/n and V. However, the different c-numbers reduce to \/n and V by the
replacements @ — a e and © — 9 ¢! with real-valued phase , which is the constant phase of the lasing
field. The solution of the initial MBE (1) does not depend on such a replacement, which adds only a
constant phase multiplier to the Langevin forces F, and F,. Therefore y/nand V in equation (28) can be
chosen to be the same for both quadratures x and p in the general case.

In the standard SSA we replace ay, and 9, by a3 and 03* in equation (27), where we neglect small
nonlinear terms quadratic in the fluctuations; we then separate the stationary equations for \/n, V (they are
equations of the semiclassical laser theory) from the equations for fluctuations. From the stationary
semiclassical laser equations we find

V = (k/Q0)Vn. (30)

Next, we solve linear equations for the fluctuations, find expressions for a, and ?1; and determine the laser
field in the SSA approximation (28). This approximation does not suffice for calculating optical spectra and
the laser linewidth, because it entails that the narrow lasing peak in the optical spectrum is replaced by a
delta-function of zero width in frequency space.

As announced above, in order to find optical spectra and the laser linewidth from analytically
solvable linear equations, we modify the standard SSA procedure: we replace a,,, and 0y, by 4y}, and

7yssa

032 not everywhere in equation (27), but only in the nonlinear terms 2€2f le,P(;Ne and

xp
—Q (&pﬁx + Vpay — <?1pf)x + f)p&x>). After this we neglect the small products of fluctuations in

these terms, as in the standard SSA, and obtain the linear equations for the quadratures

fzx)p = —/{&x,p + Qo’lA)x)p + Pﬂx,p’ (313)

{)x,p = _('Vl/z)@x,p + QOf (&x,pN + 2\/E5Ne) + P“W’ (31b)

and for the population fluctuations

SN, = —Q [V, + 0,) + V@, + a,)] — 5 (P + 13N, + Fu,. (32)

Equation (31) are for fluctuating quadratures with zero mean. We will see that the spectrum found with the
ay.p solutions of equation (31) does not feature a delta-function, but rather a narrow peak of finite width.
In the standard SSA, the variables y/n and N at high excitation are solutions of the semiclassical laser
equations. In contrast to the standard SSA, we do not know exactly the #n and N in equations (31) and (32).
Below we calculate n and N using a solution of equations (31) and (32), similar to our calculation of the
unknown N in equation (10) of section 3. The fact that n and N are determined by the fluctuating laser
field, polarization and populations make our approach different from the standard SSA. This lets us find
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Figure 3. Sketch of the lasing field and its fluctuations. The initial lasing field, represented by the blue vector 1 at an angle of 45°,
changes into vector 2 due to a fluctuation of its direction and length during a short time At much smaller than the characteristic
time scale for direction (phase) fluctuations 1;:. Direction fluctuations are much slower than length fluctuations, so after At the
difference angle § < 1. Also shown are the quadratures a; , as well as the symmetric a5 and anti-symmetric 4, combinations that
are defined by equation (34) and used in the approximation (28). The identities 4, = ag + &, and a, = ag — a), explain why aj, ¢
(see red and green arrows) are illustrated along both axes. For § < 1, the dg and 4, combinations determine, correspondingly,
the amplitude and phase fluctuations of the field. The green (the red) dashed vectors denote the change of the field vector 1 due
to only phase (amplitude) fluctuations.

n # 0, N as well as optical spectra at low excitation, similar to section 3, but now also taking population
fluctuations into account.

Equation (32) for 6N, depends on fluctuations of the quadratures a,, and ﬁ;)P as introduced in
equation (28). The equations for @, , and ¥, can be found by the standard SSA procedure: we insert the
approximation (28) everywhere into equation (25), neglect the small terms that are quadratic in the
fluctuations and write linear equations for the fluctuations as

éli@ﬁ = _K/a;,P + QO,D;C,]? + ﬁ”x,p’ (333)
0, = —(7L/2)0, + Qof (a,N + 2¢/n6N,) + F,,. (33b)

Together with equation (32) this constitutes a closed set of equations for SN,. We insert its solution into the
linear equation (31) for the quadratures, solve these equations and end up with solutions for ay, and ¥y.

It is convenient to carry out calculations by extracting the symmetric (S) &g and anti-symmetric (A) dx
combinations of the quadratures and their fluctuations introduced in (28)

ds = (G +Gp) /2, da= (0 —Gp)/2, (34)
ag = (6 +a,)/2, ay = (&, — a,)/2,
where av means a or v. A-combinations change their signs upon exchange of the indices x = p in
equation (34), while S-combinations do not. From the inverse relations &, = &g + &}, and &, = 45 — @),
we see that S-combinations contribute in the same way to the x- and p-quadratures, whereas
A-combinations contribute with the same absolute values to both quadratures, but with opposite signs.
These properties lead to the important physical interpretation that S-combinations correspond to amplitude
fluctuations while A-combinations correspond to phase fluctuations, as illustrated in figure 3.

We obtain four linear equations for the S- and A-combinations of quadratures from equations (31) and
(34)

apns = —Raas + Qolas + PaA,S, (35a)

Oa = —(71/2)0s — Qofaa 2N, — No) + E,, (35b)
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bs = —(71/2)ds + Qof [as (2N, — Np) + 2¢/néN.| + F,s, (35¢)

and three equations for symmetric combinations of quadrature fluctuations in the SSA approximation
introduced in equations (28) and (34), and for /N,

s = — ks 4+ Qi + Fa, (36a)
by = —(71/2)0% + Qof [ak (2N, — No) + 2/ndN,] + E,, (36b)
6Ne = —2v/n (Qds + Ka§) — (P + 1)0N, + Fy,, (36¢)
with
FUKS,A — (PQ e:Flﬂ/4 + FO[F eiIW/4)/2> (37)

and where « stands for a or v.

We see that equation (35) are split into two sets of equations: the two equations (35a) and (35b) for the
A-combinations of the quadratures, and the five equations: (35a) and (35¢) for S-combinations of
quadratures, two equations (36a) and (36b) for S-combinations of fluctuations of quadratures in the SSA
approximation introduced in equation (28b), and equation (36¢) for SN..

We now find 6N, by solving the set of equation (36), then substitute this SN, into equation (35) and
solve equation (35). This straightforward but cumbersome procedure can be simplified by noting that the
fluctuations a§ and 0 of S-combinations of quadratures in SSA approximation coincide with as and
Us—solutions of equation (35). Indeed, equations (36a) and (36b) for a§ and 0§ are the same as
equations (35a) and (35¢) for as and 0s. Therefore ag and 0 differ from as and s only by constant parts.
But ag, 05, as and Us have zero means by definition, so such constant parts must be zero for all of them. We
obtain, of course, the same N, from equation (36¢) with a4 and 9%, or if we replace in equation (36¢) aj
and 7§ by as and 95 found from equations (352a) and (35¢). So in equation (36) we can replace the
fluctuations a§ and o5 introduced in the SSA by the symmetric combinations as and s which we are
looking for. And we obtain the final set of linear equations

ars = —kins + Qoias + Fays) (38a)
Oa = —(71/2)0s — Qofas 2N, — No) + E,,, (38b)
s = —(v1/2)ds + Qof [as 2N, — No) + 2¢/n0N,] + Fy, (38¢)
0N, = —2y/n (Quiss + rats) — 7| (P + 100N, + By, (38d)

The five equation (38) are split into two sets of equations: the first—for a4 and ¥ and the second—for
as, Ug and ON,. They will lead to the same results as the set of seven equations (35) and (36) (not shown).
In order to find the mean photon number #, we express

a=ase™t +ase A, (39)
insert this equation (39) into n = (a*a) and obtain
n=ns(N,) + na(Ne) + i([aa, as]) . (40)

Inserting equation (39) into [a,a™] = 1 we find [a, as] = i/2, while for the mean photon number we
obtain
n = ns(N,) + na(N,) — 1/2. (41)

By inserting this equation (41) into the energy conservation law (4), we obtain an equation for N.,.
We will make some remarks about equation (38) and about their applicability.
Solving equation (38) we will see that (af) < (a}) for strong pumping (see the discussion after
equation (49)). In order to preserve this last inequality in the SSA, we must replace the solution of
equation (38) by
at=n+id, at=-—Vn+a, (42)

(and similar for ©,,). Then
(ag) = (@, +ay)*) /4 < (a3) = ((d, — a,)*) /4~ n.

The SSA replacement (42) differs by the sign of the c-number term for a;* (and similarly for 93*) from the
SSA replacement (28). This means that the field and polarisation found from equation (38) in SSA both

10
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have constant phase shifts of 7r/2 with respect to the ones used in the SSA replacement (28). This difference
is insignificant, because a constant phase of the field and polarisation, introduced in the equation for SN,
does not affect the results. Suppose that we solved the exact equation (1) numerically, so that we found a
and ©. If we then would add a constant phase ¢ to both of them, by introducing a, = a €', i, = ¢ €', and
replacing a and © by a4, and 7, in equation (1c), we would obtain

N, = —Qo(a}d, + 8] a,) + 7 (PNy — N.) + Fy, (43)

from which N, can be found (numerically). The result for N, will obviously be the same as obtained from
the original equation (1), since the phase factor €' in a,, and 9, is canceled in equation (43).

When the pump is diminished, population fluctuations also decrease, and the solution of equation (38)
gradually approaches the solution of equation (10) found without population fluctuations. Then it is
natural to use equation (38) also for moderate and for low excitations. We leave a rigorous justification of
equation (38) for low excitations for the future, but here instead provide some physical arguments for the
applicability of equation (38) at moderate and low excitations.

The largest error at low excitation comes from the first term in equation (38d) for population
fluctuations, because in this term we neglect second-order correlations (shown explicitly in equation (27¢))
that are not necessarily small at low excitation. However, this term only makes a broadband contribution of
width ~+ | . When considering the effect of this first term, while omitting the second term, we find that the
first term does not introduce any specific features in the spectra at low excitation. In other words, the first
term in equation (38d) gives only a small change in the spectral power density everywhere in the spectrum.

By contrast, the influence of the second term of equation (38d), ~7|> on the optical spectra is
concentrated in the narrow spectral region ~~| < 7, near zero frequency, where it competes with the first
term and produces interesting features such as a peak or a dip in spectra near w = 0, as we will see. So we
will use equation (38) also at moderate and low excitations. We will keep all terms in equation (38d) in
order to provide the correct asymptotic behavior at high excitations and it will turn out that new features
related to population fluctuations appear for weak pumping.

Equations (38a) and (38b) for the A-combinations do not depend on population fluctuations explicitly
and can be solved independently from the rest of equation (38). However, the A-combinations do depend
on ng and, therefore, on 6N, implicitly, through the energy conservation law (4), where n(N,) is given by
equation (41). Because of this, we will obtain different relations between 4, ns and # at low and at high
excitations.

5. Solving the combinations of the field quadratures

In this section we first solve the equations (38a) and (38b) for the A-combinations of the field and
polarization quadratures, these equations being the ones that do not explicitly depend on population
fluctuations. In doing so, well-known results for the laser linewidth in the high-pump limit will be
reproduced.

We replace a, and 04 in equations (38a) and (38b) by their Fourier expansions (11), then solve the
linear equations for the Fourier components a,(w) and 04 (w), and find

(71/2 — iw)E, (w) + QoF,, (w)

ar(w) = (iw — k) (iw —v1/2) — BN (44)

From a,(w) we can calculate the corresponding optical spectrum 5 (w) by
(aa(W)aa(w) = na(w)d(w + w), (45)

analogous to equation (14). The relevant diffusion coefficients are given by
2Dayay = /2, 2Dug0, = f1LN0/4, (46)

as calculated in appendix B. With the help of equation (44), the diffusion coefficients (46), and the
correlations of Langevin forces (2), we find the spectrum of the A-combinations of the photon field to be

(k/2)[(1 4+ No/Nw)v? /4 + w?]
[(1 = N/Nm)(k71/2) = w?]?> + w?(k + 7. /2)*

na(w) = (47)

11
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The photon numbers 7145 residing in the A- or S-combinations are in general given by the integrated
spectra

) )
mas = o / s (w)do. (48)
2T

By carrying out this integration with 1, (w) given by equation (47), we find the number of photons in the
A-combinations of the field quadratures as

(49)

" gal <N0+Nth m)

A p—
426 4+v) \ Nu —N 71

So here we find, perhaps not surprisingly, that 7, can grow very large when the laser is pumped strongly
and the population inversion N approaches its semiclassical stationary value Ny,. However, in section 6 we
will see that in the same high-pump limit, the number of photons ng in the S-combinations of the
quadratures is much smaller than 7, in equation (49). Mathematically, this is the case because ng does not
have a corresponding term ~1/(Ny, — N). Physically, because ng is suppressed by relaxation oscillations
introduced by population fluctuations. So almost all lasing photons reside in the A-combinations and
na =~ n. Anticipating these results for the spectra and for the number of photons in the A-combinations, we
now replace n by n in equation (49), and use this to derive an expression for the linewidth as a function of
the laser output power, as we did before in equation (23): in equation (49) we neglect the term 2x/7 |,
which above threshold is small compared to the large first term oc (N, — N)™'. The linewidth ~,, is again
defined as the full width at half maximum of the optical spectrum, i.e. 715 (7},,/2) = 1a(w = 0)/2. This
leads to exactly the same expressions (18) and (19) for the linewidth ,, as found previously for the
spectrum (16), when expressed in terms of the average population inversion, N. However, the crucial
difference is that the variation of N with the pump level P changes quantitatively as the laser threshold is
passed, leading to different dependencies of the laser linewidth on power above and below the laser
threshold.

To see this, we express (N, — N) in terms of 7 and the laser output power W,,,.. We insert the result into
equation (19), and obtain for the laser linewidth in the high-excitation limit

2

1/ 2k hw

Mas = = = Nsp ’ . (50)
2\2k+ VL Wout

This looks a lot like equation (23) for the laser linewidth in the low-pump limit. It differs only by the
prefactor of 1/2 in equation (50), and by a different expression for the spontaneous-emission factor, which
for equation (50) reads

Nsp = (NO +Nth)/2Nth~ (51)

The result (50) is the same as, for example, in reference [67]. Our approach gives a new interpretation to
this remarkable result: the linewidths (23) and (50) at low and at high pump rates are different due the
different roles of population fluctuations below and above threshold. As shown in the next section, above
threshold the population fluctuations reduce the number of photons in S- and increase it in
A-combinations, which govern only slow frequency fluctuations and thereby narrow the linewidth. We will
also see that the total number of photons #n(P) in the field practically does not depend on population
fluctuations.

6. Calculation and analysis of optical spectra

Equations (38a) and (38c¢) for the symmetric combinations as and ¥s of the field and polarization and
equation (38d) for population fluctuations lead to algebraic equations for the Fourier-component operators

as(w), g(w), and N, (w). By solving them, we obtain the Fourier-component ds(w) of the S-combinations
of the field quadratures. Then, using relation (45) with indices ‘S’ instead of ‘A’, we find the spectrum of the
S-combinations as

kl(wh — w4+ 71 /2)? + W (71 /2 +9p)*] 4 573 (W + 3)No /4Nt + w2 k)7L (PNg + Ne) /Nin
2|(iw — vp)[(1 = N/Nwm)rv1 /2 — w? — iw(k + 71 /2)] + wZ (iw — 2K)|?

ns(w) = ,» (52)

where v, = (P + 1) and
w? = 40%fn (53)

is the squared relaxation oscillation frequency at high pump in the rate-equation limit 2x < v, [37]. For
the derivation of equation (52) we used the diffusion coefficients 2D,g,, = 2D and 2D,.,. = 2D

axaa 0N VAUA

12
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given by equation (46), and the diffusion coefficient
ZDNENE = (PNg + N,). (54)

We have found that correlations between the Langevin forces representing fluctuations of the carrier
population and the polarization give only a very small contribution to the spectrum for a large number of
emitters Ny > 1 and at weak coupling €0y /(2x + v, ) < 1, which is the case considered here. For that
reason we shall in the following neglect these correlations and put the corresponding diffusion coefficients
to zero (i.e. 2Dy N, = 0).

The full spectrum of the lasing mode is

n(w) = na(w) + ns(w) + nas(w), (55)

where 1, (w) and ng(w) are given by equations (47) and (52). So we are left with calculating nas(w). By
inserting the Fourier expansions (11) for as and a, into the commutator ([d,, ds]) in equation (40), we find
for nas(w) the relation
i{[aa(w), as(w")]) = nas(w)d(w + w').

We find na5(w) approximately, by neglecting the small population fluctuations. This way we automatically
satisfy the commutation relation (27) ! f fzo nas(w)dw = —1/2. It is not easy to satisfy these commutation
relations, when taking population fluctuations into account, as shown for example in appendix B. We leave
for the future the problem of preserving commutation relations while taking population fluctuations into
account.

By setting SN, = 0 (that is the case considered in section 3) in equation (35), we see that the equations
for as and vs are identical to the equations for a, and 04, so that 14 (w) = ng(w) and therefore

nas(w) = 25 (w) — n(w) |55, 0> (56)

where n(w)| §N,—0 18 obtained in section 3 and given by equation (16). By inserting equation (56) into
equation (55) and applying there equations (16) and (47), we obtain the lasing spectrum

(k72 /ANw) (N + No/2) — 0.5k(72 /4 + w?)

n(w) = ns(w) + [(1 — N/Nu)(571/2) — w?]? + Wik + 7. /2)%

(57)

with ng(w) still given by equation (52).

The spectrum n(w) depends on the population inversion N, which can be found from the energy
conservation law (4) in the same way as in section 3. We express 7 [entering ns(w) through equation (53)]
through N by the same energy conservation law (4). Then, the population inversion N is the only unknown
variable in equation (4). Written in terms of the numbers of photons in the S- and A-combinations, the
conservation law becomes

ns(N) + na(N) = 1/2 = L [P(Ng = N) = Ny = NI. (58)

Here, na(N) is given by equation (49), and ns(N) is found by integrating equation (48) with ng(w) given by
equation (52). We find the mean population inversion N by solving the integral equation (58) numerically.

In our calculation examples we choose parameters close to typical ones for photonic crystal nanolasers
with quantum-dot active media [38]: for the wavelength of the lasing transition we pick A\g = 1.55 pm, for
the background refractive index n, = 3.3, the cavity mode volume V, = 10(\y/#n,)® with Ny = 100 emitters;
a population relaxation rate -y = 10° s~'; a vacuum Rabi frequency Qo = (d/n,)[wo/(c0h V)] 1/2 with a
dipole moment of the lasing transition d = 1072 ¢m so that Qy = 34~;; the average atom-lasing
mode-coupling factor f = 1/2; finally, we choose the cavity quality factor Q = 1.2 x 10* so that

In the examples below we vary the dephasing rate vy, and the pump P while keeping all other
parameters fixed. The value for «y, is varied between y™" = 50 GHz (so that 2x /™" = 2) to
" = 1.5 THz (with 2k /" = 0.07). This is a realistic region of v, for quantum dots [68]. Within
this range for v, the conventional beta-factor 3 varies from 0.98 to 0.6, while the beta-factor B, varies
from 15 to 1.4, so lasers with the chosen parameters have significant amounts of spontaneous emission
into the lasing mode.

Lasers with high 3-factors and low dephasing rates, 2+ / A/min = 2, are superradiant, while lasers with
2k /™ = 0.07 < 1 are not superradiant even if 3, > 1. Upon variation of 7, between " and "™, we

will thus be able to compare results for superradiant and for non-superradiant lasers.
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Figure4. (a) Mean photon number for a superradiant laser with v1" = 50 GHz (red curve) and for a non-superradiant laser
with 47 = 1.5 THz (black curve). Black dashed curves are n(P) as calculated by the semiclassical model of equation (5).

(b) Population inversion N(P) for superradiant laser (red curve). Green (blue) dashed curves show the asymptotics of N(P) at
high (low) pump. The green curve is N(P) at n = n, for large pump; the blue curve is N(P) without population fluctuations.
Vertical dotted lines separate the LED and laser regions from an intermediate cross-over region.

6.1. Photon numbers and population inversions

Calculations of mean values of photon numbers and population inversions are helpful for the identification
of different lasing regimes and for understanding the role of population fluctuations. Our procedure to find
the mean photon numbers and population inversions is as follows: first we calculate ng(N) by inserting the
spectrum ng(w) from equation (52) into equation (48). Then we insert ns(N) found from equation (48)
and n4(N) from equation (49) into the energy conservation law (58). By solving the latter equation, we can
determine the population inversion N. By inserting this N back into 7155 (IN), we find the mean photon
number # from equation (41).

The red curve in figure 4(a) shows the mean photon number n(P) for a superradiant laser, while the
corresponding black curve is for a non-superradiant laser. For low pump rates the superradiant laser
exhibits ‘subradiance’ and excitation trapping [22, 24], i.e. the photon number is smaller than for a
non-superradiant laser. At high pump rates, by contrast, the superradiant laser is seen to generate more
photons than the non-superradiant laser. There are two reasons for this: first, excitation trapping becomes
weaker as the average emitter population grows and is suppressed when population inversion is achieved;
second, in our case the superradiant laser has a smaller polarization relaxation rate -, than the
non-superradiant laser.

Panel figure 4(b) shows the population inversion N(P) for a superradiant laser (red curve). The blue
dashed curve depicts N(P) as found by neglecting population fluctuations, which should be a good
approximation for low pump rates. The dashed green curve shows N(P) in the approximation n =~ n,,
which should be valid for high pump rates. The exact red curve indeed approaches the blue (green) curves
at low (high) pump rates.

By following the red curve in figure 4(b) and observing where it approaches its asymptotics at low and at
high pump rates, we can roughy identify three regions: the LED region at small pump rates, where
fluctuations of populations are negligible; the lasing region at high pump rates, when almost all photons
reside in the A-combinations of quadratures; and the remaining intermediate region between the lasing and
the LED regions. These regions are separated by vertical dotted lines in figure 4(b).
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Figure 5. (a) Linewidth -,,((P) of equation (18) for a superradiant laser with v, = 50 GHz, with N found from equation (58)
(red curve). An approximation for 7,,,(P) in the low-pump limit is obtained by neglecting population fluctuations (dashed blue
curve) and in the high-pump limit (dashed green curve), with N given by equation (C1la) for both these limits; (b) photon
numbers in the S- (green curve) and A-combinations (black curve) of the field of a superradiant laser. The same three radiation
regions as in figure 4(b) are shown, separated by vertical dotted lines. The red line is the mean photon number 7 (41), which
practically overlaps the red dotted line depicting n without population fluctuations.

Figure 5(a) shows the linewidth v,,,(P), given by equation (18) with N determined from equation (58)
for a superradiant laser (red curve). The LED, intermediate and lasing regions shown in figure 5 are the
same as found in figure 4(b). The effects of the same approximations as in figure 4 are now shown for the
linewidth: the blue dashed curve in figure 5(a), given by equation (23) for a laser below threshold [57, 64],
represents the approximation of neglecting population fluctuations, which is again shown to be valid for
small pump rates, i.e. in the LED region. The green dashed curve in figure 5(a) is given by the laser
linewidth equation (50) for a laser far above threshold [67] that was found by taking n ~ n4. As before in
figure 4, this approximation is shown to be accurate at large pump rates, i.e. in the lasing region.

Figure 5(b) shows the photon numbers (n55 — 1/4) of the S- and A-combinations of the field
quadratures for a superradiant laser. The reason to display (154 — 1/4) on the vertical logarithmic axis is
that in the low-pump limit P — 0, when ng — n,, we have ng s — 1/4, in accordance with equation (58).
We see that population fluctuations (from now on abbreviated as PF) have different influences on ng and
na. Removing SN, from equations (38a)—(38b), we find that these equations are the same for A- and for
S-combinations, so that without PE, the 1, and n5 would be identical and follow the blue dashed curve in
figure 5(b). Preserving SN, in equations (38a)—(38b) and plotting ns 5 (P) (the black and red curves in
figure 5(a)), we see that photon numbers ng o are hardly affected by PF in the LED region, but PF lead to
ng > 1, in the beginning of the intermediate region. From the end of the intermediate region and onwards,
the PF suppress ns making ng < n, in the lasing region, where we also see that indeed 1, ~ n, as we
anticipated in section 5 to derive the central result equation (50) for the linewidth. Thus, due to PF above
threshold, s is strongly suppressed and #, increased by a factor of two.

Figures 6(a) and (b) shows the analogous results for a conventional (non-superradiant) laser, to be
contrasted with the case of figures 5(a) and (b). The linewidth ~,,(P) of the conventional laser departs more
gradually from its asymptotics at low pump to the asymptotics for high pump. An even more conspicuous
difference with superradiant lasers is that for the non-superradiant laser ng never exceeds 5. This is an
indication that PF have a stronger effect on the superradiant lasers. But ng and 74 are both clearly affected
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Figure 6. (a) Linewidth v, (P) for non-superradiant laser with 77 = 1.5 THz (red curve) and approximations for 7,,,(P)
without population fluctuations (dashed blue curve) and for high pump (dashed olive curve). (b) Energies ng of S- and n, of
A-fluctuations of the field of a non-superradiant laser. The blue dashed curve shows 1, = ng as found without population
fluctuations. In contrast with the superradiant laser in figure 5(b), here ng < n, everywhere. The same radiation regions as in
figure 4(b) are separated by vertical dotted lines. The red solid line is the mean photon number # of equation (41), while the red
dotted line is n without population fluctuations.

by PF for both types of lasers, and for both lasers ng ~ 0 and 1, ~ n at high pump rates. By contrast, both
for the superradiant laser in figure 5(b) and for the conventional laser in figure 6(b), we see that the total
number of photons practically does not depend on PF.

In the next section we will see that the larger PF of superradiant lasers will make their spectra
qualitatively different from those of non-superradiant lasers.

6.2. Optical spectra
The different shapes of optical spectra for low and for high pump rates reflect different physical effects. It is
therefore convenient to consider the spectra for high and for low pump rates separately.

Figure 7(a) shows optical spectra n(w), given by equation (57), for a superradiant laser, with
2k /Pn = 2, for high pump rates P > 2. Figure 7(b) shows the same for a non-superradiant laser, with
2k/v, = 0.2. Only in figure 7(a) for the superradiant laser do we see sideband peaks in the spectra.

These sideband peaks (or spikes) in n(w) for curves 2 to 5 in figure 7(a) have the same nature as
relaxation oscillations in lasers with 2k < | [36] that are described by rate equations. Sideband peaks
appear because the carrier population reacts with some delay to changes in the field and polarization. The
delay causes oscillatory energy exchange between the field, polarization and population with a resonance at
the relaxation oscillation frequency. For 2k < |, the relaxation oscillation frequency is given by wy,, as
defined in equation (53) [36]. Such resonances cause well-known sidebands in the intensity fluctuation
spectra [36, 41], see also figures 9(a) and (b) below. Analogous sideband peaks due to relaxation oscillations
are not resolved in optical spectra of the non-superradiant laser with 2x/v, = 0.2 < 1 in figure 7(b). We
attribute this to the fact that such a laser has smaller population fluctuations than a superradiant laser, as we
have seen above in the analysis of the mean photon numbers, comparing figure 5(b) with figure 6(b).

For comparison, the dashed versions of curves 1, 2 and 3 show the corresponding spectra if population
fluctuations are neglected. While curves 1 with and without population fluctuations are practically identical
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Figure7. (a) Optical spectra of a superradiant laser with y1" = 5 x 10'° s~! and 2x/v, = 2 and (b) of a non-superradiant
laser withy, =5 x 10" s7' and 2K/, = 0.2, for pump rates P = 2 (curves 1); 8 (curves 2); 16 (curves 3); 28 (curves 4) and 40
(curves 5). The dashed curves are spectra found without population fluctuations, with the same parameters as for the solid
curves 1, 2 and 3 of the same color.

(apart from a small structure in the center that we will discuss below), the dashed and solid curves 2 and 3
in figure 7(a) are qualitatively different: no sideband peaks are observed when population fluctuations are
neglected. By contrast, solid and dashed curves are quite close to each other in figure 7(b) for the
conventional (non-superradiant) laser, where population fluctuations are smaller than in the superradiant
laser.

The two-peak structure in n(w) for curve 1 in figure 7(a) has a different origin than the sideband peaks
in curves 2-5 in this figure. The two broad peaks in curve 1 are due to CRS, which occurs when a large
number of emitters exhibit Stark shifts in the lasing field. The parameters used for curve 1 satisfy the
conditions for CRS, in particular P < P, see section 3 after equation (17). For curves 2 to 5, we have
P > P, so CRS is absent. We described CRS in more detail in reference [59], but without taking population
fluctuations into account.

Figures 8(a) and (b) show optical spectra for low pump rates P < 2. The two broad peaks in the curves
in figure 8(a) are due to CRS. At these lower pump rates than previously considered in figure 7, population
fluctuations lead to small features in the center of the optical spectra, namely a peak in figure 8(a) and a dip
in figure 8(b). These small features arise due to nonlinearities. Mathematically, the denominator of
equation (52) for ns(w) is a cubic polynomial of w? and the spectrum n(w) in equation (57) is a
complicated function of w?.

Physically, the photons emitted at the frequencies of the two CRS peaks participate in a nonlinear
scattering process: they induce population fluctuations, which couple to the polarization, and thereby have
a back action on photon emission. In other words, photons may be re-absorbed and then emitted again by
other emitters, which constitutes a nonlinear photon scattering process. Figure 8(a) shows that photons
from both CRS peaks are re-absorbed and re-emitted most effectively near the center of the spectrum,
leading to the small central peak in the optical spectra in figure 8(a).

Figure 8(b) shows the modification of the spectrum n(w) due to the nonlinear photon scattering in a
conventional (i.e. non-superradiant) laser, when conditions for CRS are not satisfied and CRS peaks are
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Figure8. Spectra when weakly pumping (a) a superradiant laser with 77" = 5 x 10'° s~ and 2k /v, =2 and (b) a
non-superradiant laser withy, =5 x 10" s7" and 2k /v, = 0.2. The pump rates are P = 0.16 (curves 1); 0.48 (curves 2); 0.8
(curves 3); 1.12 (curves 4) and 2 (curves 5). Solid curves represent spectra with population fluctuations. For comparison, the

corresponding dashed curves are found upon neglecting population fluctuations. Small structures (peaks and dips) in the centers
of the spectra are due to nonlinear polarization induced by population fluctuations.

absent. Here, most emitters are near the center of the spectrum, and photons emitted in this spectral region
are absorbed and re-emitted by all other emitters away from the center. By nonlinear scattering the energy
of the field is thus taken from the center of the spectrum, where we see a dip, and re-emitted far from the
center. Indeed we see that away from the dip, the solid curves in figure 8(b) lie slightly above the dashed
curves, which do not take into account the nonlinear photon scattering.

For increasing pump rates, the main lasing peak grows, and the tiny nonlinear structures in the center of
the lasing spectrum disappear.

From the solution of equation (38) it is difficult to say at what parameter values the peak in optical
spectra at low excitations, as in figure 8(a), turns into a dip, as in figure 8(b). Calculations show that such a
change depends on the competition of the first and the second terms in equation (38d). In particular, if we
remove the first term in equation (38d), then at low excitation we will see only a small and narrow peak of
width ~~ in the optical spectra, a peak caused by the second term in equation (38d). In our theory the
first term in equation (38d) at low excitation is obtained in a rough approximation. So, for the moment, we
only have a qualitative prediction and physical interpretation of the small peaks or dips at low excitation in
our model. We leave more quantitative investigations of these interesting structures for the future.

6.3. Spectra of intensity fluctuations

The radio-frequency spectrum of laser intensity fluctuations is important for applications of lasers in
optical communications and can be measured by direct photodetection of the lasing field as fluctuations of
the photocurrent [36]. Here we will derive an approximate expression for the intensity fluctuation spectra
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Figure 9. Photon number fluctuations in the high-pump limit for (a) a superradiant laser and (b) a non-superradiant laser. The
parameters for the lasers and for the curves 1 to 5 are the same as in figures 7(a) and (b). Photon number fluctuations and
relaxation oscillation peaks for the non-superradiant laser are much smaller than for the superradiant laser.

of our nanolasers, restricting ourselves to the high-pump limit, where almost all energy resides in the
A-combinations of the quadratures.

Slow fluctuations of A-combinations, or equivalently phase fluctuations according to figure 3, can be
neglected in calculations of photon number fluctuations. In this high-excitation limit, according to
equations (28a) and (34),

a~ (Vn+d)e™. (59)

In equation (59) the operator dg describes broadband amplitude fluctuations, and we take a5 = as where as
is found from equation (38). Then we obtain the photon number (or intensity) fluctuation spectrum

nrp(w) = 4nng(w), (60)

where ng(w) is given by equation (52). In figure 9, photon number fluctuation spectra are shown for the
same parameter values as in figure 7. In figures 9(a) and (b) one observes the well-known relaxation
oscillation peaks [37, 69]. When +y | increases corresponding to the transition from a superradiant laser
(figure 9(a)) to a conventional laser (figure 9(b)), the population fluctuations are reduced and the maxima
of the relaxation oscillation peaks in nrp(w) decrease. Similarly, the sideband peaks in the optical spectra of
the superradiant laser shown in figure 7(a) disappear upon increasing v |, finally arriving to the case of the
conventional laser with optical spectra as shown in figure 7(b). This similarity confirms that sideband peaks
in optical spectra of a superradiant laser are caused by strong population fluctuations leading to strong
relaxation oscillations.

7. Discussion

In this section we discuss our approach to linearize the MBE, followed by a discussion of the main results.
In the high-pump limit, equation (1) can be linearized around their mean values, when the field and

polarization are sums of their coherent parts, which is a solution of the semiclassical equation (5), plus

small fluctuations [36, 54, 55]. Such a linearization is equivalent to the SSA that is well-known in electrical
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engineering [70] and which has also been applied to laser rate equations before [37, 71]. Rate equations can
not be applied for superradiant lasers, where polarization is a dynamical variable.

The standard SSA of equation (1) cannot be applied in the low-pump limit, where the mean values of
the lasing field and polarization vanish. In order to linearize the MBE in the low-pump limit, we made a
first approximation within our new method in section 3 by neglecting population fluctuations with respect
to the large mean-value population of the large number of emitters. This approximation gives satisfactory
results when calculating mean values. An important example is the mean photon number, which is well
described both below, near and above the semiclassical laser threshold. Also, the laser linewidth is accurately
accounted for, at least below threshold. However, it is one of the main points of this paper that accounting
for population fluctuations is necessary in order to correctly account for the linewidth of the laser above
threshold, as well as the detailed structure of the laser spectrum below as well as above threshold.

We therefore made an improved analysis, where both the population fluctuations and the dynamics of
the material polarization are taken into account. First we considered the high-pump limit in section 4, but
again using an approach that differs from and extends the conventional SSA. The first difference is that we
separate the mean values and fluctuations only in the nonlinear terms in the laser equation (1). A further
difference is that we use the symmetric (S) and the anti-symmetric (A) combinations (34) of the
quadratures. In figure 3 we showed that S-combinations are related to the amplitude and A-combinations to
the phase of the lasing field. We arrived at two linear sets of equations: a set of two equations (38a) and
(38b) for A-combinations and a set of three equations (38a), (38¢c) and (38d) for S-combinations of the
quadratures coupled to population fluctuations. Our finding that population fluctuations are explicitly
coupled to the S- but not to the A-combinations, is in agreement with the well-known fact [72] that
variations in the carrier density change the gain, which subsequently changes the amplitude. If the
alpha-parameter (linewidth enhancement factor) is zero, as in our case, the gain changes do not affect the
phase.

Next we put forward the hypothesis that the linearized equation (38) as derived in the high-pump limit
can be used in the intermediate- and in the low-pump limits as well, where they give satisfactory
approximate predictions. First of all, if we neglect population fluctuations, then equation (38) become
identical to the equation (10) that we derived for the low-pump limit in section 3.

Having discussed our new approach in detail, in the remaining part of this section we will discuss our
new results.

We demonstrated that the well-known factor 1/2 difference between the laser linewidth equation (23)
for the low-pump limit and equation (50) for the high-pump limit arises due to population fluctuations. If
we would neglect population fluctuations, then we would obtain the linewidth (23) for arbitrary pump
rates. Furthermore, we calculated the laser linewidth at arbitrary pump rates, taking population fluctuations
into account, and demonstrated a smooth transition between the limits for low and high pump rates, as
shown in figures 5(a) and 6(a).

We calculated the full optical spectrum, given by equations (55) or (57). In the high-pump limit, the
optical spectrum features a narrow peaked spectrum 7, (w), with a width determined by the phase
fluctuations, on top of a broad background spectrum ng(w), related to the amplitude fluctuations. Similar
sharp ‘coherent’ peaks and ‘incoherent’ wings are seen in experiments, for example in figure 1 of reference
[64] or, for superradiant lasers, in figure 4(b) of reference [20]. The usual analysis completely neglects this
broad background emission in the optical spectra [35].

We found sidebands in the optical spectrum n(w), shown in figure 7(a) for a superradiant laser with a
high beta factor and a low-quality cavity (2x/7, > 1). In this case, population fluctuations are especially
important and the laser displays strong relaxation oscillations, which show up as sidebands in the optical
spectra.

Another mechanism that gives rise to satellite peaks in optical spectra is well-known for semiconductor
lasers. It arises because the refractive index depends on the level of excitation, as described by the so-called
a-parameter in the rate equations [33]. However, this is not the mechanism leading to the sideband peaks
in our model, where the frequency of the lasing field is exactly on resonance with the lasing transition and
the a-parameter is zero.

For weak pumping, when the main lasing peak has not yet appeared, we predict small features in the
center of the lasing spectra as displayed in figure 8. These small spectral peaks and dips only appear when
taking population fluctuations into account. With our present theory we only make qualitative predictions
about these small features, because we neglect the second-order correlations in equation (27¢) although at
low excitation these are of the same order of magnitude as the linear terms in this equation for population
fluctuations 6N,. From calculations that do account for these correlations, not shown in this paper, we find
that the small central peaks and dips are preserved, but their heights and widths are changed. Below we give
an interpretation why the central peak (dip) appears for the lasers parameters of figure 8(a) (figure 8(b)).
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Population fluctuations (PF) at low excitation have a relatively high spectral power density in the range
7| < V1, 2k near zero frequency, where the PF are mostly due to the pump and the population decay noise.
Far from the center of the spectrum on the other hand, the PF are caused by the interaction with the field
and polarization, and the spectral density of PF is relatively small. Since 7| is much smaller than the width
of the spectra in figure 8, the PF can produce either a peak or a dip of width ~+ in the center of the optical
spectrum.

When CRS is absent, as in figure 8(b), then the maxima in the linear and nonlinear parts of the
polarization coincide and interfere destructively in the frequency region of width | around the center of
the optical spectrum. The linear part of the polarization (i.e. the part that is independent of population
fluctuations) induces the birth of a photon. This leads to a PF, which decreases the population of the upper
level. Such a PF, in turn, leads to a polarization fluctuation, which suppress the birth of the next photon.
This is a reason for a dip in the center of the optical spectra in figure 8(b).

The situation is different when the maxima of the linear part of the polarization are not in the center of
the optical spectrum, as it happens when CRS occurs. Then the PF in the frequency region near the center
of the spectrum are less affected by the lasing field, compared to the case without CRS. The field now
resides mostly in CRS peaks far from the center, where the spectral power density of the PF is relatively
small. The pump, therefore, increases the PF near the center of the spectrum, leading to a central peak, as
shown in figure 8(a).

The new sideband peaks and fine structures of spectra of superradiant laser have not been seen in the
experiments of references [20-22, 24, 25]. Based on our theory, we predict the kind of lasers and the
parameter region, given after equation (58), in which to observe such features. The active medium should
work in a three-level (effectively two-level) scheme. The sufficient conditions for a laser to be superradiant
must be satisfied, i.e. BC > 1and 2k > 7, . For example, one can reduce v, so that 2x > = |, by lowering
the temperature of a nanolaser with g-dots as the active medium [68]. Or vice versa, by increasing the
temperature one can go from the superradiant to the non-superradiant regime in the same laser. The pump
rate must be in the range from ~y to 207, corresponding to the intermediate region (see figure 4(b)),
where population fluctuations have their maximal effect, and the sideband peaks in optical spectrum (see
figure 7(a)) can be observed. Lasers with possibly larger relaxation oscillation peaks in the intensity
fluctuation spectrum, as in figure 9(a), are good candidates for observing sideband peaks in the optical
spectrum as predicted here.

In our theory we have neglected inhomogeneous broadening of the active medium. This implies that for
our current theory to be directly applicable, the actual inhomogeneous broadening must be much smaller
than the distance between sideband peaks in the field spectra in figure 7(a). It was shown in reference [73]
that collective effects synchronize emitters, even if the cavity linewidth is smaller than the inhomogeneous
broadening. So we expect that some features in the spectra of SR lasers as discussed here will also show up
in the presence of inhomogeneous broadening. More precise criteria for the observation of sideband peaks
in the optical spectra of superradiant lasers will be derived from detailed investigations of the optical
spectrum (57) in the future.

8. Conclusion

We presented a quantum theory for the spectra and fluctuations of a single-mode homogeneously
broadened two-level laser. We developed a new approach, which does not employ the common
approximation of eliminating the polarization adiabatically, meaning that the theory also applies to
superradiant lasers with a low-quality cavity and a high beta factor. We linearised the equations, solved
them and obtained analytical results.

We identify the LED region, where the laser linewidth described by equation (23) is wide as in references
[57, 64], the lasing region with a narrow laser linewidth equation (50) in agreement with reference [67],
and the intermediate region in between them.

Different from the rate-equation approaches of references [33—36], we describe a smooth transition
between the linewidth equation (23) in the LED region and the linewidth equation (50) in the lasing region,
as in figures 5(a) and 6(a). Furthermore, we calculated optical spectra, including phase and amplitude
fluctuations, which respectively lead to a narrow peak and a wide background of the spectra at high
excitation, as in figure 7.

For superradiant lasers in the intermediate region, we predict two sideband peaks in the optical spectra
n(w), as a consequence of strong relaxation oscillations induced by strong population fluctuations. The
sideband structure in n(w) disappears for a non-superradiant laser with smaller relaxation oscillations and
weaker population fluctuations.
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In the LED region, we predict a structure (peak or dip) in the center of the lasing spectrum that is
caused by the interference of the linear and nonlinear parts of the polarisation. The interference is
constructive, leading to a small peak in the center of the spectrum, if the linear part of polarisation displays
CRS [59]. Otherwise the interference is destructive and then we predict a corresponding small dip in the
center of the spectrum.

We expect that our approach and results will be useful also for further theoretical and experimental
studies of spectra, fluctuations and correlations in superradiant lasers as, for example, in the nonstationary
multimode superradiant lasers with hot normal modes [74], and in other lasers for a wide range of
parameters, at any pump values and when the active-medium polarisation cannot be adiabatically
eliminated.

In this paper we used our method only to calculate mean values and lasing spectra. In the future, our
approach could also be used to calculate higher-order correlations, for example the second-order
correlation function g, of the lasing field.
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Appendix A. Inter-emitter correlations

Here, we will estimate the contributions to SR lasing of collective effects, inter-emitter correlations, and
collective spontaneous emission. We use the examples considered in the main text. By employing equations
for mean values, we neglect the effect of population fluctuations, which have only a small influence on
mean values. Such equations for mean values, for our model without adiabatic elimination of polarization,
were derived in [62]. There inter-emitter correlations were introduced as

D=y (o),
i#j
and C(N) = D/(nN + N,) as a measure of collective effects. C is the ratio of the rate of collective
spontaneous emission into the lasing mode (proportional to D), and the combined rate of spontaneous and
stimulated emission and absorption (proportional to (nN + N,)). In the stationary case, the proportionality
coefficient for all these rates is the lasing differential gain (i.e. gain per photon and per emitter). It was
found in [62] that
- (2k/v0N
Ny, + (ZH/WJ_)(Nth —N) .

We see that C(N) is small at 2/, < 1; the minimum C ~—1 at N = —Nj and 2x/7v, > 1; C increases
with 2k /7, and approaches 2k /v at large pump, when N — Ny,. Thus, collective effects are important for
low-Q cavities, in accordance with [17-19], when 2x/~v, > 1.

Figure 10 shows C(P) for two examples, used above, with v, = 50 GHz, 2x/, = 2 and with
v, =500 GHz, 2k/7v, = 0.2. We see that for the laser with the low-Q cavity and 2x /7, = 2, the variable
C varies much more as a function of pump rate than for the laser with a high-Q cavity characterized by
2k/v, = 0.2. For high pump C > 1 at 2x/7v, = 2, so the collective spontaneous-emission rate exceeds the
rates of stimulated and spontaneous emission and of absorption. At low pump in a low-Q cavity laser, the
inter-emitter correlations lead to strong excitation trapping, so that spontaneous emission into the lasing
mode is suppressed almost completely: D ~ —(nN + N,) so that C — —1, although C does not reach —1
exactly.

The stationary radiation rate R,q into the lasing mode found in [62] is

(A1)

Read = Y| Be[Nn + N, + (2/71)Nn]. (A2)
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Figure 10. Parameter C, characterising collective effects, as a function of pump for a superradiant laser with 2/, = 2 (blue
curve) and for a non-superradiant laser with 2k/, = 0.2 (black curve). Horizontal dashed lines show maximum values of C(P)
for SR and non-SR lasing, and the minimum C(P) = —1, when spontaneous emission into the lasing mode is fully suppressed
due to excitation trapping.

Here the first term Nn describes stimulated emission and absorption, the second term N, describes
spontaneous emission into the lasing mode, while the last term (2x/7 )Nn = D is responsible for collective
spontaneous emission into the lasing mode. One can introduce a beta-factor BSR = Rrad /7 Ne> where 7 Ne
is the rate of all losses of the upper-level population, except the radiative one. fBsr takes into account
collective emission into the lasing mode

Bsk = Bl + (25 /v )nN/N,]. (A3)

For N < 0 we have Ss < f3c, which implies subradiance due to population trapping. For N > 0 we have
B SR > BC, so that SR increases the radiation rate into the lasing mode and helps to reach lasing.

We see in figure 4(b) that the population inversion N approaches Ny, in the lasing region. So in order to
reach lasing, the number of emitters Ny must be large: Ny > Ny,. This condition may be written as
B> 2k /(Noy) or, with our values of parameters, B>1 /2. Taking 8 = B /(1 + /3) we obtain that in our
case 3 > 1/3 both for SR lasing at 2x/7, > 1 and for non-SR lasing at 2k /v, < 1. We conclude that in
our case the SR lasing conditions are 2x/y, > 1and § > 1.

Appendix B. Diffusion coefficients
The Heisenberg—Langevin equation for an operator Q,, is
dQ,/dt = M, + F., (B1)
where F, is the Langevin force, with properties
(Fo) = 0, (Fo(t)F4(t)) = 2Dupd(t — t').
Here the diffusion coefficient 2D, 3 is determined from the ‘generalized Einstein formula’

2D(v3 = d<©(v©3’>/dt - <MU¢Q3> - <Q(1M3’> (BZ)

If we denote the upper (lower) state of the ith emitter by |e), (|g),), then 6; = |g),{e|,, 6" = |e),(g|; and
1™ = |a),(al, for = {e,g}. Using the orthogonality of the states (al;]B); = basdij, we obtain
+

6. 6j= ﬁl(-e) dij and therefore 010 = fN,, where % and f are the same as in equation (1).
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From equation (B2) we find
2D+, = f[’YLNe + (PNg — N,)I. (B3)

The second term ~~ in equation (B3) is due to population fluctuations. Population fluctuations are small
and, in general, change mean values only slightly, as illustrated for example for n(P) in figures 5(b) and
6(b). The same is true for equation (B3), where the second term can be neglected for not too high
pumping, when v, > 7/ P. In calculations we see that the second term in equation (B3) has only a small
influence on the results. So for our examples with v, < 7P, we take 2D+, = f N..

There is one more reason for the approximation 2D, +, ~ fv, N,. Taking a(w) given by equation (12),
the diffusion coefficient (B3) and 2D,+, = 0, we find the commutator

faby 1 4kn 1
(la.a7]) =1 71 (N + No) <2n+ 1+2f-€/n> '

The mismatch with ([a,a%]) = 1 comes from the second term on the right in equation (B3). This example
shows that usage of exact diffusion coefficients in combination with approximate equations is an excess of
accuracy and may lead to the breaking of commutation relations.

If Q%. = Qa,- + qu then

2Dy, = 2Da,a, + 2Dga, + 2Dgya, + 2Dg,,, (B4)
as it follows from equation (B2). From equation (B2) we find

2D, + = f[v.Ng — v|(PN; — N)],2D,,+ = 2k, (B5)

+

while the remaining diffusion coefficients for @, a™, ¥, 9 all vanish. From equations (B3)—(B5) we obtain

the diffusion coefficients (46) of the main text.
Using the operator relations N.N, = N, and N,N ¢ = 0, we obtain 2Dy, in equation (54) of the main
text.

Appendix C. Stationary solutions

In this appendix we derive expressions for the stationary population inversion and photon number both
below and above threshold.

First we consider the situation below threshold. We solve equation (21) and find the stationary
population inversion

N
N(P) = 55 [2(1) ~ 1)No/Nin — My — \/@} , (Cla)

where M, = (P — 1)Ny/Ny, —P— 1 — BC and Q, = M} + SPBCNO/Nth. After that we determine the

stationary photon number n(P) from the energy conservation law equation (4) and find

n(P) = é (M + V@) (C1b)

Next we do the analogous analysis in the high-excitation limit. In this case, almost all photons are in the
A-combination of quadratures, so in equation (49) we set ny, = n and we neglect the constant term 2%/~ |
with respect to the term ~1/(Ng, — N) that gets large when N — Ny, at high pump. By inserting this
photon number 7 into equation (4) we again arrive at a quadratic equation for N,

Be(No + Nw)/2 = [P(Ny — N) — Ny — N](1 — N/N,).

Solving this equation and using the energy conservation law equation (4), we find solutions N and n that
are again given by equation (Cla), but now with the coefficients

M, = (P—1)Ng/Ny — P — 1,
Qu = M2 +2(P+ 1)B.(No/Nu + 1),

instead of M; and Q, respectively.
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