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In the main text we have omitted several details from the estimates of decoherence and the
performance of the procedures. In the following we give more details on how these were obtained.
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I. DECOHERENCE OF THE NV CENTERS

A.
√

SWAP operation between individual NV centers

In the main text, we describe a method to perform an entangling operation between two NV centers near the same
FQ using this as a quantum bus. The interaction between different NVs is mediated off-resonantly by the FQ and
can be described starting from the Hamiltonian ĤRWA in the main text, extended to the case of 2 NVs. Taking the
mixing angle θ → π/2, such that the FQ is optimally biased with respect to low-frequency flux noise, and a rotating
frame such that the FQ is detuned −δ, rather than the NVs being detuned δ, this Hamiltonian reads

H = − δ
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In this picture, it becomes clear that there are two zero-energy eigenstates: H |00〉|0〉FQ = H |D〉|0〉FQ = 0, with

the dark state |D〉 ≡ 1√
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2 . There is a corresponding bright state |B〉 = 1√
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(
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)

,

and the state |B〉|0〉FQ is coupled to |00〉|1〉FQ with coupling strength G2. Similarly the state |11〉|0〉FQ is coupled to
|B〉|1〉FQ with coupling strength G2.

Therefore, in second order perturbation theory, projecting onto the lower energy state of the flux qubit, we have

Heff =
G2

2

δ
(|B〉〈B| + |11〉〈11|) . (2)

Here we will assume WFQ
⊥,1 ≈ WFQ

⊥,2 and thus G2 ≈
√

2g. The probability of finding the system in the excited state

is then zero for the two dark states and 2g2/δ2 for the two bright states of the system. Thus, FQ relaxation and

Markovian dephasing, which occur directly to the FQ at a rate 1/T FQ
2 , will lead to errors at a rate ∼ 2g2/δ2T FQ

2 for
the two NV spins. Low- frequency noise enters in small variations of δ, which also contribute at order 2g2/δ2. Since

such low-frequency noise is non-Markovian it will only give a quadratic contribution ∼ (g2t/(δ2T FQ
2 ))2, which will be

less severe than the Markovian dephasing. We therefore take a worst-case scenario and assume the decoherence to be
produced by Markovian dephasing.

To optimize the gate operation, we note that the overall time when the FQ is coupled is tX = π
2

δ
2g2 . There is an

additional wait time for the NV centers of 2tW = tX(1 − 4φ/π), where φ = 2 sin−1(1/
√

8) as in the main text. For
NV spins in the states |00〉, |D〉, the error is entirely from the total time tX + 2tW , as the FQ is not included, while
for NV spins in the states |11〉, |B〉, both FQ and NV dephasing errors enter. We take the latter case to overestimate
the error induced in the operation, and find an effective dephasing of the NV center exp[−( tX+2tW

TNV
2

)3], as expected

from a dipole-dipole bath decorrelation, and an additional dephasing due to the admixture of the FQ as exp[− 2tXg2

δ2TFQ
2

].

The only free parameter we can optimize over is the detuning δ. Rewriting the total fidelity as

F = exp[− δ3

α3
− β

δ
] (3)
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with α =
2g2TNV

2

π(1−2φ/π) and β = π

2TFQ
2

, the optimum occurs for δ∗ = (α3β/3)1/4, giving F∗ = exp[−(β/α)3/4(31/4+3−3/4)].

Substituting α and β in δ∗ and the numbers given in the main text we find F∗ = exp[−2.18(g2T FQ
2 T NV

2 )−3/4] ≈ 0.98

and δ∗ = 0.96[g6(T NV
2 )3/T FQ

2 ]1/4 ≈ 2π × 3.6 MHz.

An additional error arises when WFQ
⊥,1 6= WFQ

⊥,2 , since then the unitary operation is not performing exactly the desired

evolution; this leads to a reduced fidelity of the entangling operation by a factor WFQ
⊥,1 WFQ

⊥,2 /g2. It is important to
note, however, that this imperfection is not a decoherence effect and it may be possible to exploit the resulting unitary
evolution even despite this imperfection, i.e., the resulting operation still resembles a

√
SWAP.

B. Decoherence of the ensemble of NV centers

In the main article we described the transfer of an excitation from the FQ to the collective state of an ensemble
of NV centers. In this section we estimate the dephasing of this collective state of the ensemble due to magnetic
dipole-dipole interactions with other spins in the diamond crystal. The paramagnetic impurities in the diamond
crystal consist of both other NVs centers with either the same or different orientation as well as unpaired electronic
spins on substitutional Nitrogens. In most experiments the ratio of Nitrogen to NV centers is typically quite low, e.g.
on the order of 1% to 10% [1]. Below we refer to this ratio as the conversion efficiency.

The dipole-dipole interaction is described by the Hamiltonian [2]

Hdip =
∑

j 6=k

1

2

µ0

4πr3
jk

[

(~m(j) · ~m(k) − 3(~m(j) · ~ejk)(~m(k) · ~ejk)
]

, (4)

where rjk is the distance between the dipoles j and k, ~ejk is a unit vector between them, and ~m(j) and ~m(k) are their
magnetic moments. These can be expressed in terms of the spin operators of the impurities, but the quantization
axis for the different spins will be different: NV centers will be aligned along the symmetry axis of the center whereas
electron spins on Nitrogens will be quantized along the axis of the applied static field. To describe this situation we

introduce spin operators ŝ
(j)
z , ŝ

(j)
+ and ŝ

(j)
− , defined relative to the quantization axis of each particular spin, and take

the different orientations into account in the coupling constant describing the interaction between different spins.
For the NV centers we furthermore ignore the mS = −1 state which is assumed to be shifted out of resonance by a

magnetic field. All the spins are therefore two-level systems which can be described by Pauli matrices σ̂
(j)
z , σ̂

(j)
+ and

σ̂
(j)
− . The spin operators can then be expressed as

ŝ(j)
z =

1

2
(σ̂(j)

z + lj), ŝ
(j)
+ =

√

1 + lj σ̂
(j)
+ , (5)

where the quantity lj, which is unity for NV centers and vanishes for Nitrogen spin, accounts for the fact that the
Nitrogen has spin 1/2 whereas the two-level NV system is made from the mS = 0 and mS = 1 states of a spin-1
particle. The magnetic dipole Hamilonian is then given by

Hdip =
∑

j,k 6=j

ajkσ̂
(j)
+ σ̂

(k)
− + bjk(σ̂(j)

z + lj)(σ̂
(k)
z + lk), (6)

where we have used the rotating-wave approximation to ignore terms which do not conserve energy. By this approx-
imation, the first term vanishes between spins with different resonance frequencies, i.e., with different orientations.
Notice, that if the quantization axes for spin j and k are different, then the angle between these axes can be contained
in the coupling constants ajk and bjk. This is the case for the interaction between the NV and Nitrogen spins, whose
quantization axes, determined by the crystal axis and the external magnetic field respectively, form an angle β between
them. For the sake of simplicity, we here only present the case β = 0. This is a worst-case scenario for the T ∗

2 derived
below, but the general situation β 6= 0 only leads to minor modifications. With parallel quantization axes, we have

ajk = µ
(a)
jk

[

1 − 6ejk
− ejk

+

]

= µ
(a)
jk

[

1 − 3

2
sin2 Θjk

]

,

bjk = µ
(b)
jk

[

1 − 3(ejk
z )2

]

= µ
(b)
jk

[

1 − 3 cos2 Θjk

]

,

(7)

where Θjk is the angle between the vector ~ejk and the crystal axis, ejk
± := (ejk

x ± iejk
y )/2, and

µ
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1

2

µ0

4π
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e

√
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√
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with µB the Bohr magneton and g
(j)
e the electron g-factor of the jth spin.

To evaluate the dephasing of the spin wave we will assume that we start out in a state |00...0〉NV where all the NVs
are initially prepared in their ground states, and that a superposition state c0|0〉FQ + c1|1〉FQ is transferred into the

collective spin wave, resulting in a state (c0 + c1J+)|00...0〉NV, with J+ = (1/G)
∑

j gj σ̂
(j)
+ . We then evaluate the time

evolution of the coherence

〈J−(t)〉 = Tr
[

eiHtJ−e−iHt(c0 + c1J+)|00...0〉NV〈0...00|(c∗0 + c∗1J−)ρB

]

, (9)

where ρB is the initial density matrix of the bath. Since the Hamiltonian (6) conserves the number of excitations in
the NVs, this expression can be simplified to

〈J−(t)〉 = c∗0c1Tr
[

eiHtJ−e−iHtJ+|00...0〉NV〈0...00|ρB

]

. (10)

Writing out the above equation in terms of single-spin operators we see that the dephasing is determined by the

time evolution of the two-point correlation function 〈σ̂(j)
− (t)σ̂

(k)
+ (t = 0)〉 in the state |00...0〉NV〈0...00|ρB. Since the

density of Nitrogen is much higher than the density of NVs, the dephasing of the spin wave will predominantly be due
to the interaction with the electronic spins of Nitrogen atoms, and we shall therefore ignore the interaction among
the NVs. In this approximation there is no longer a mechanism in the Hamiltonian which can transfer the excitation

from one NV to another and the correlation function 〈σ̂(j)
− (t)σ̂

(k)
+ (t = 0)〉 vanishes exactly for j 6= k. The dephasing

of the spin waves thus reduces to the calculation of the single-spin dephasing averaged over the spin wave:

〈J−(t)〉 = c∗0c1

∑

j

|gj |2
G2

Tr
[

eiHtσ̂
(j)
− e−iHtσ̂

(j)
+ |00...0〉NV〈0...00|ρB

]

, (11)

where the sum runs over all NVs in the spin wave. Assuming all NVs to be equivalent this can be simplified to the
calculation of the dephasing of a single-spin in a bath

〈J−(t)〉 = 〈J−(t = 0)〉Tr
[

eiHtσ̂
(j)
− e−iHtσ̂

(j)
+ |0〉NV〈0|ρB

]

. (12)

When considering a single NV, the action of the spin bath described by (6) essentially corresponds to a random
magnetic field generated from the spin ensemble along the crystal axis. This effective field will be fluctuating in time
because the dipole-dipole interaction among the Nitrogen spins introduces flip-flop processes. When the Nitrogen
concentration is much higher than that of NVs, the distance between Nitrogens is comparable to the distance between
NVs and the nearest Nitrogen. These flip-flop processes will therefore take place on a time scale which is comparable
or only slightly faster than the NV dephasing time. For simplicity we here ignore the flip-flop processes and consider
a static environment. This represents a worst-case scenario, since this approximation removes the time averaging of
the field from these processes. The actual dephasing time T ∗

2 will therefore be slightly larger than what we predict
here. Within this approximation the expression in Eq. (12) can be reduced considerably:

〈J−(t)〉 = 〈J−(t = 0)〉Tr

[

∏

k

e−i4bjkσ̂(k)
z tρB

]

, (13)

where the product is over the Nitrogen spins.
With expression (12) we can evaluate the dephasing for a given bath. For a given density n, the typical strength of

the spin-spin interaction is µ0µ
2
Bg2

en/4π, of the order of ∼ 25 µK for high Nitrogen densities nN ∼ 1019 cm−3. This
is much smaller than the typical operating temperature of the FQ (tens of mK), and we can therefore neglect the
interaction among the spins for determining the initial density matrix of the bath ρB. Furthermore any non-vanishing

mean value 〈σ̂(j)
k 〉 6= 0 only results in a mean shift of the resonance frequency of the ensemble. The dephasing will

thus be determined by spin fluctuations. A worst-case scenario can be obtained by assuming that the mean value

vanishes 〈σ̂(j)
k 〉 = 0, in which case the variance is maximal. The evolution of the coherence is then given by

〈J−(t)〉 = 〈J−(t = 0)〉
∏

k

cos(4bjkt). (14)

To simplify this expression we expand it in time and find

〈J−(t)〉 = 〈J−(t = 0)〉
(

1 − 2t2nN

∫

d3~rkb2
jk

)

, (15)
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where we have replaced the sum by an integral and introduced the Nitrogen density nN. Using Eq. (7) this expression
reduces to

〈J−(t)〉 = 〈J−(t = 0)〉
[

1 − t2
(

µ0

4π

µ2
BgN

e gNV
e

8

)2

4πnN

∫ π

0

sinΘ(1 − 3 cos2 Θ)2dΘ

∫

1

r4
dr

]

. (16)

The angular integral gives 8/5 but the radial integral has a strong divergence at r → 0. Since the integral is an integral
over the distance between the NV and the Nitrogen impurity, this divergency represents the very fast dephasing of NV
centers which happen to have a nearby Nitrogen spin. Such NV centers with a nearby Nitrogen spin will, however,
also be far out of resonance during the interaction with the Flux qubit. This interaction takes a time ∼ 1/G, and
therefore any NV with a dipole interaction stronger than G will effectively not participate in the spin wave. We
exclude these NVs by truncating the integral at a distance rmin when the interaction strength reaches the value of
the coupling constant G, i.e.,

G =
1

8

µ0

4π

µ2
BgN

e gNV
e

r3
min

. (17)

This truncation of the integral gives

〈J−(t)〉 = 〈J−(t = 0)〉
[

1 − t2
µ0µ

2
BgN

e gNV
e

15η
nNVG

]

, (18)

where η is the Nitrogen-to-NV conversion efficiency. The result (18) corresponds to the first term in an expansion of
an exponential decay exp(−(t/T ∗

2 )2) with coherence time

T ∗
2 =

1
√

µ0µ2
B

gN
e gNV

e

15η nNVG
. (19)

Notice that in order to be applicable, our regularization procedure requires rmin to be much smaller than the typical
distance between spins 1/ 3

√
nN, since we require that only a small fraction of the NVs are excluded. This condition

is fulfilled in the interesting regime GT ∗
2 ≫ 1. Taking a conversion efficiency η = 0.05, we find T ∗

2 ≈ 0.3 µs for a
FQ with L = 5 µm and a density nNV = 1018 cm−3, corresponding to G ≈ 2π × 15 MHz. For a full transfer of the
state from the FQ to the spin wave and back we need a transfer time t = π/G, corresponding to an infidelity of the
order of 1 − F ∼ (t/2T ∗

2 )2 < 0.5% (the factor of 2 accounting for the fact that the excitation only spends half of the
transfer time in the spin wave). For different densities the infidelity scales as 1 − F ∝ √

nNV, becoming smaller at
lower densities due to the reduced dipole-dipole interaction, e.g., at nNV = 1016 cm−3 the error is reduced by an order
of magnitude but then we are approaching the limit where the FQ decoherence becomes important. The transfer of
excitations from the FQ to the spin wave is thus feasible in the regime 1016 cm−3 . nNV . 1018 cm−3. In order for
the spin system to be useful as a long-term memory the coherence time should, however, also be sufficiently long to
allow for the transfer to the nuclear spin for long-term storage. Since this can at best be achieved on a time scale set
by the hyperfine interaction (∼ 5 MHz), this would exclude working at the highest densities in this interval. Working
at a density of nNV ∼ 1017 cm−3 leads to T ∗

2 ≈ 1.8µs, which is sufficient to allow a transfer of the excitation from the
electron spin to the nuclear spin with an infidelity 1 − F at the percent level.

The estimates above indicate that it is realistic to achieve a transfer of excitations from the FQ to the spin wave
and back even without extending the coherence time by spin-echo techniques. These may, however, be desirable in
order to achieve even longer coherence times. In particular T2 may be extended if the NVs can be flipped by an
external AC field on a time scale faster than the Nitrogen flip-flop processes. One should, however, be careful about
applying spin-echo to the collective NV spin since, e.g. errors in the pulse area may give rise to collective decoherence
processes. These can be more detrimental to quantum states stored in collective degrees of freedom than in individual
spins (for instance flipping the |0〉 − |1〉 transition would require control of the pulse area to an accuracy better than

1/
√

N in order to preserve the collective state). Since the dephasing of the NV spin wave is dominated by Nitrogen
spins a more desirable solution could be to apply the external driving field to the electron spins on the Nitrogen
atoms. If these spins are flipped on a time scale much faster than the flip-flop processes it would lead to an increased
coherence time of the NV spin wave. Since Nitrogen spins have a considerably different resonance frequency, this
could be achieved with little influence on the NV spin wave where the quantum information is stored.

II. DECOHERENCE OF THE FLUX QUBIT DUE THE SPIN BATH

A different concern is the extent to which the diamond crystal with a high density of spins may cause dephasing of the
flux qubit, of particular importance for the coupling with an ensemble of NVs. As discussed above, the paramagnetic
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impurities in the diamond crystal consist primarily of NV centers and unpaired electron spins on Nitrogen atoms which
were not converted into NVs centers during the annealing process. Due to the typically low conversion efficiency from
Nitrogen to NV centers, we shall first consider the effect of Nitrogen impurity spins and then discuss the role of the
NV centers. The coupling of the FQ to paramagnetic impurities can be described by a Hamiltonian similar to Eq.
(1) in the main text:

Ĥ = Ĥspin + ετ̂3/2 + λτ̂1 + τ̂3

∑

j

~WFQ(~rj) · ~S(j), (20)

where the spin Hamiltonian Ĥspin =
∑

j ∆jS
(j)
z /2 + Ĥint describes an energy splitting ∆j of the individual spins and

the interaction between them, encapsulated in Ĥint. Changing to the dressed-state picture of the flux qubit, this
Hamiltonian is transformed into

Ĥ = Ĥspin + ωτ̂3/2 + (cos θτ̂3 − sin θτ̂1)
∑

j

~WFQ(~rj) · ~S(j). (21)

In the rotating frame with respect to ωτ̂3/2, the operator τ̂3 remains stationary whereas τ̂1 oscillates at a frequency ω
– much higher than any time scale of the bath, provided that there are no near resonance impurities in the diamond
sample. This is the case for the Nitrogen spins, whose splitting is determined by the applied field. The NVs are near
resonance and will be dealt with below. The slowly varying and rapidly oscillating terms have different qualitative
behavior so we will consider them separately.

Let us first consider the slowly-varying contribution. As we will show now this contribution vanishes if we work
close to the degeneracy point of the FQ cos θ ≈ 0 where the left- and right-circulating current states are degenerate.
The slowly-varying contribution is described by

Hslow = τ̂3W
FQ
eff , (22)

with

WFQ
eff ≡ cos(θ)

∑

j

[

WFQ
z (~rj) cos(βj) − WFQ

⊥ (~rj) sin(βj)
]

S
(j)
3 , (23)

and βj being the angle between the quantization axis the jth spin and the crystal axis of the NV (recall that the
z-axis is defined by the crystal axis). For simplicity, we define

κj := WFQ
z (~rj) cos(βj) − WFQ

⊥ (~rj) sin(βj). (24)

Since the interaction of the flux qubit with an individual spin is on the order of g, the former has little influence on
the state of an individual spin for the duration of the interaction ∼ 1/G ∼ 1/g

√
N . Furthermore the coupling of the

FQ to collective degrees of freedom in the spin bath, will only have a limited influence on the state of an unpolarized
bath, since the FQ can flip at most a single-spin. We can therefore ignore the influence of the FQ on the spin bath

and consider WFQ
eff as a fluctuating external field. Any mean value of this field will merely give rise to a shift of the

resonance frequency which can be compensated and we thus need to consider the fluctuations. The root mean square
of the fluctuating field is given by

δWFQ
eff = cos(θ)

[

∑

j,k

κjκk〈〈S(j)
3 S

(k)
3 〉〉

]1/2

, (25)

where we have used the cumulant notation 〈〈ab〉〉 := 〈(a − 〈a〉)(b − 〈b〉)〉. As discussed in the previous section, the
temperature is typically high compared to the dipole-dipole interaction energy. We can therefore ignore correlations
of different spins and consider only the j = k contribution, giving

δWFQ
eff ≈ cos(θ)

[

∑

j

κ2
j〈〈(S

(j)
3 )2〉〉

]1/2

. (26)

Considering a Nitrogen-to-NV conversion of η ∼ 5%, the sum over the impurities in the ensemble will be dominated by
the Nitrogen impurities. An estimate of this expression can be obtained by noting that the coupling to the Nitrogen
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spin κ is comparable to the coupling g to the NVs. The difference between this sum and the sum leading to the
collective coupling constant G only differ by the number of terms in the sum and we obtain

δWFQ
eff ∼ cos(θ)√

η
G. (27)

A more accurate treatment taking into account the full spatial distribution of the field over a sample of the dimensions
considered in the text only changes the estimate by a factor of less than 2. Eq. (27) quantifies how close to the
degeneracy point we need to be so that the dephasing of the FQ induced by the bath of spins is negligible. In
particular, from (27) we derive that we can safely neglect this dephasing on a time scale 1/G for a conversion

efficiency η = 0.05 if cos(θ) . 0.01, for which δWFQ
eff /G . 0.05.

Next we turn to the rapidly oscillating part of the coupling, described by the term containing τ̂1, and assume
that we are near the degeneracy point, that is sin θ ≈ 1. We will now argue that since τ̂1 is oscillating rapidly, the
slowly-varying dynamics of the spin bath will only have a very weak influence on the FQ. Specifically the spin bath can
influence the FQ either through direct transitions to the spin bath or through a slow dephasing. The direct coupling
can be excluded by noting that the coupling constant to collective excitations of the bath is limited by G/

√
η, but for

reasonably low applied magnetic fields, Bext . 10 mT, the detuning ω − ∆j will be of the order of the NV zero-field
splitting (a few GHz). The probability to transfer the excitation is ∼ G2/(ω−∆j)

2η, and can thus safely be neglected
since G ∼ MHz. The dephasing of the FQ caused by the bath can be estimated by calculating the energy shift of the
FQ in second order perturbation theory. Assuming that apart from the free precession, the spins change slowly on a
time scale set by ω − ∆j , the effective interaction is given by

Heff = τ̂3

∑

l

WFQ
z (~rl)

2

4ω
+

WFQ
⊥ (~rl)

2ω

4(ω2 − ∆2
j )

− WFQ
⊥ (~rl)

2∆j

2(ω2 − ∆2
j )

S(j)
z (t). (28)

Here the first two terms are independent of the state of the impurities, and therefore merely lead to a mean shift of
the energy, which can be compensated by a magnetic field. It is thus only the last term which leads to dephasing.
Again, we can estimate the root mean square value of this term by neglecting the correlations among the impurities
and we find a typical energy shift

∆E ∼ G√
η

g∆j

ω2 − ∆2
j

, (29)

which we can safely neglect since the single-spin coupling g ∼ kHz is much smaller than any other quantities in the
system.

A remaining problem is the influence of the NVs with different orientations. The interaction with these centers
is similar to that with the resonant subensemble and of order ∼ G. We assume that we select a single orientation
by applying a magnetic field with a component along the axis of the NV center. This will shift all other centers
out of resonance by an amount δω ∼ geµBBext, such that the resulting error can be estimated to be G2/δω2. For a
reasonable applied field, e.g., Bext ∼ 10 mT, this error is negligible.
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