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a b s t r a c t

We propose Hybridizable Discontinuous Galerkin (HDG) methods for solving the frequency-domain
Maxwell’s equations coupled to the Nonlocal Hydrodynamic Drude (NHD) and Generalized Nonlocal
Optical Response (GNOR) models, which are employed to describe the optical properties of nano-
plasmonic scatterers and waveguides. Brief derivations for both the NHDmodel and the GNORmodel are
presented. The formulations of the HDGmethod for the 2D TMmode are given, inwhichwe introduce two
hybrid variables living only on the skeleton of the mesh. The local field solutions are expressed in terms
of the hybrid variables in each element. Two conservativity conditions are globally enforced to make the
problem solvable and to guarantee the continuity of the tangential component of the electric field and
the normal component of the current density. Numerical results show that the proposed HDG methods
converge at optimal rate. We benchmark our implementation and demonstrate that the HDGmethod has
the potential to solve complex nanophotonic problems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nanophotonics is the active research field concerned with the
study of interactions between nanometer scale structures/media
and light, including near-infrared, visible, and ultraviolet light.
It bridges the micro and the macro worlds, and there are many
connections between theoretical studies and feasible engineering.
The many fascinating (potential) applications include invisibility
cloaking, nano antennas, metamaterials, novel biological detection
and treatment technologies, as well as new storage media [1].

All of the above applications of nanophotonics require elaborate
control of the propagation of light waves. In order to do so, appro-
priate mathematical models are needed to predict the behavior of
light-matter interactions. Metals are interesting for nanophotonics
because they can both enhance and confine optical fields, making
plasmonics of interest to emerging quantum technologies [2–4].
This is enabled by the existence of Surface Plasmons (SPs). SPs
are coherent oscillations that exist as evanescent waves at both
sides of the interface between any two materials where the real
part of the dielectric function changes sign across the interface.
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The typical example is a metal–dielectric interface, such as a metal
sheet in air [5]. Maxwell’s equations can be employed to model
themacroscale electromagnetic waves. There are in fact numerous
approaches ranging from classical electrodynamics to ab initio
treatments [6,7]. Ab initio techniques can be used to simulate
the microscopic dynamics on the atomic scale, but with ab initio
methods one can only deal with systems with up to about ten
thousand atoms [7], thus calling for semiclassical treatments [8,9]
or more effective inclusions of quantum phenomena into classical
electrodynamics [10–13].

If one models the interaction of light with metallic nanostruc-
tures classically or semiclassically, then this calls for appropri-
ate modeling of the material response as described for example
by the Drude model [14,15], the Nonlocal Hydrodynamic Drude
(NHD) model [16,17], or the Generalized Nonlocal Optical Re-
sponse (GNOR) theory [8], all in combination with and coupled to
Maxwell’s equations. Except for some highly symmetric geome-
tries, analytical solutions to the resulting systems of differential
equations are not available. Thus, numerical treatment of these
systems of PDEs is an important aspect of nanophotonics research.
Numerical experiments help to find promising systems and ge-
ometries before real fabrication, to obtain optimized parameters,
to visualize field distributions, to investigate the dominant con-
tribution to a phenomenon, to explain experimental observations,
and so on [18].
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Several numerical methods exist for computing the solution of
Maxwell’s equations [6]. For time-dependent problems, the Finite-
Difference Time-Domain (FDTD) algorithm is the most popular
method [19] among physicists and engineers. More recently, the
Discontinuous Galerkin Time-Domain (DGTD)method has drawn a
lot of attention because of several appealing features, for example,
easy adaptation to complex geometries and material composi-
tion, high-order accuracy, and natural parallelism [20]. For time-
harmonic problems, the Finite Element Method (FEM) is most
widely used for the solution of Maxwell’s equations. In very re-
cent years, theHybridizableDiscontinuousGalerkin (HDG)method
appears as a promising numerical method for time-harmonic
problems because it inherits nearly all the advantages of the DG
methods while leading to a computational complexity similar to
FEM [21–24].

Currently, FDTD (for time-dependent problems) and FEM (for
time-harmonic problems) methods are still the methods most
commonly adopted for the simulation of light–matter interactions.
Most often, commercial simulation software (such as Lumerical
FDTD1 and Comsol Multiphysics2) is used for that purpose. How-
ever, these methods and computer codes do not always offer
the required capabilities for addressing accurately and efficiently
the complexity of the physical phenomena underlying nanome-
ter scale light–matter interactions. In the academic community,
also the DGTD method has recently been considered in this con-
text [18,25,26]. In Ref. [27], some numerical results are presented
for the NHD model using the DGTD method. In the present paper
we are employing the HDGmethod to solve the frequency-domain
NHD and GNORmodels. The development of accurate and efficient
numerical methods for computational nanophotonics is expected
to be a long-lasting demand, both because new models are reg-
ularly proposed that require innovative numerical methods, and
because there is demand for more accurate and faster simulation
methods for existing models.

This paper introduces aHDGmethod for the solution of theNHD
and GNOR models. The rest of the paper is organized as follows. In
Section 2, we briefly introduce mathematical aspects both of the
NHD model and of the GNOR model. HDG formulations are given
in Section 3. Numerical results are presented in Section 4 to show
the effectiveness of high-order HDGmethods for solving problems
in nanophotonics. We draw conclusions in Section 5.

2. Physics problem: nonlocal optical response by nanoparticles

The problem considered is shown in Fig. 1 where the
nanometer-size metalΩS is illuminated by an incident plane wave
of light. The infinite scattering domain is truncated as a finite
computational domain Ω by employing an artificial absorbing
boundary condition, which is designed to absorb outgoing waves.

2.1. Nonlocal hydrodynamic Drude model

There are a number of theories for the modeling of the light–
matter interactions which are used under different settings. In this
subsection, we briefly introduce the NHD model. The incoming
light is described as a propagating electromagnetic wave that sat-
isfies Maxwell’s equations. Without external charge and current,
Maxwell’s equations of macroscopic electromagnetism for non-
magnetic materials can be written as{

∇ × H = ε0εloc∂tE + J,
∇ × E = −µ0∂tH,

(1)

1 https://www.lumerical.com/
2 http://www.comsol.com/

Fig. 1. Sketch of the incident electromagnetic wave illuminating the scatterer ΩS
that has a subwavelength size and is surrounded by free space. ΩS is usually filled
with metals, such as gold, silver or sodium. An artificial absorbing boundary ∂Ω is
introduced to make a computational domain Ω .

where H and E are respectively the magnetic and electric fields, ε0
is the permittivity constant,µ0 is the permeability constant, εloc =

ε∞ + εinter is introduced to account for the local response, and J is
the nonlocal hydrodynamic polarization current density which is
due to the nonlocal material on the plasmonic scatterers [28]. In
this paper, wewill for simplicity set εinter = 0 and ε∞ = 1, thereby
focusing solely on the free-electron response to light. Eqs. (1) need
to be completed to solve electromagnetic fields E andH because of
the unknown polarization current density J. The models that we
will consider in this paper differ only in the assumed dynamics
of the polarization current density, which we will now discuss in
more detail.

The polarization current density J due to themotion of the free-
electron gas can be written as

J = −env, (2)

where e is the charge of the electron, n is the density of the
electron gas (a scalar field), and v is its hydrodynamic velocity (a
vector field).Within the hydrodynamicmodel, the dynamics of the
velocity field satisfies [27,29]

me(∂t + v · ∇)v = −e(E + v × B) − meγ v − ∇

(
δg[n]
δn

)
, (3)

where me is the mass of an electron, −e(E + v × B) is the Lorentz
force with B being the magnetic flux density, γ is a damping
constant, g[n] is an energy functional of the fluid, and the term
∇
(

δg[n]
δn

)
denotes the quantumpressure. Complementary to Eq. (3),

the dynamics of the free-electron density is given by

∂tn + ∇ · (nv) = 0, (4)

which is the well-known continuity relation that relates the veloc-
ity v and the density n.

The hydrodynamic dynamics described by Eq. (3) is obviously
nonlinear in v, but in the following we only consider the linear
response of the electron gas on external fields. One can write a
perturbation expansion v ≃ v0 + v1 and similarly for the electric
and magnetic fields and for the density. Since in the absence of an
external field v = v0 = 0, both the nonlinear term v · ∇v and the
magnetic induction field B disappear due to the linearization [9]. If
we furthermore assume the energy functional to be of the Thomas–
Fermi form, then we obtain for the linearized quantum pressure

− ∇

(
δg[n]
δn

)
= −meβ

2 1
n0

∇n, (5)

https://www.lumerical.com/
http://www.comsol.com/
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where β2
=

3
5v

2
F with vF being the Fermi velocity. The zero-

order (i.e. equilibrium) density n0 is constant within the plasmonic
medium [9]. Here in Eq. (5) and below,wewrite n for the linearized
density n1 and similarly we will from now on simply write v for
the linearized velocity v1. As a result, we obtain the linearized
hydrodynamic equation [17,27]

me∂tv = −eE − meγ v − meβ
2 1
n0

∇n, (6)

as well as the linearized continuity relation

∂tn = −n0∇ · v. (7)

Inserting Eqs. (2) (linearized as J = −en0v) and (7) into (6), and
taking the time-derivative ∂t , we obtain

∂tt J + γ ∂t J − β2
∇(∇ · J) − ω2

pε0∂tE = 0, (8)

where ωp is the plasma frequency with ω2
p = n0e2/(meε0). By

Fourier transformation we replace ∂t with −iω, where i is the
imaginary unit and ω is the angular frequency, and obtain the
frequency-domain relation between polarization current density
and the electric field within the hydrodynamic model as

ω(ω + iγ )J + β2
∇(∇ · J) = iωω2

pε0E. (9)

This equation describes electron–field interaction within the plas-
monic nanostructure ΩS . We will neglect spill-out of electrons
outside the classical geometric surface of the structure, which
for our purposes is a good assumption for noble metals such as
silver and gold [9]. Mathematically, this is arranged by imposing
a hard-wall condition on the boundary ∂ΩS , namely n · J = 0 on
∂ΩS [30,31].

2.2. General nonlocal optical response model

We also briefly present the mathematical derivation of the
central equations of the GNOR model, based on Ref. [8]. The new
feature of the GNORmodel is that also diffusion of the electron gas
is taken into consideration. Let the density n(r, t) = n0 + n1(r, t),
where the last term is the induced density variation caused by a
non-vanishing electric field E, which we assume sufficiently small
that n1 ≪ n0 holds. Instead of (7), we now consider the linearized
convection–diffusion equation [8]

− e∂tn1 = −eD∇
2n1 + en0∇ · v = −∇ · J, (10)

where D is the diffusion constant for the charge-carrier diffusion.
Then the current density is given by Fick’s law

J = −en0v + eD∇n1. (11)

Multiplying (6) by the charge of the electron −e, the equilibrium
density n0 and taking the time derivative we have

− en0me(∂t + γ )∂tv = n0e2∂tE + emeβ
2
∇(∂tn1). (12)

Dividing (12) byme and combining with Fick’s law (11) results in

(∂t + γ )[∂t J − eD∇(∂tn1)] =
n0e2

me
∂tE + eβ2

∇(∂tn1). (13)

From the convection–diffusion equation (10), we have

(∂t + γ )[∂t J + D∇(∇ · J)] =
n0e2

me
∂tE − β2

∇(∇ · J). (14)

Like what we did for (8), transforming (14) to the frequency do-
main gives

ω(ω + iγ )J + [β2
+ D(γ − iω)]∇(∇ · J) = iωω2

pε0E. (15)

The physical predictions obtained by the GNOR and NHD models
often differ substantially, as illustrated below. However, from a
computational point of view the GNOR model only differs by the
replacement β2

→ β2
+ D(γ − iω) in the frequency domain,

whereby the nonlocal hydrodynamic parameter acquires an often
non-negligible imaginary part. In the GNOR model we have the
same additional boundary condition n · J = 0 on ∂ΩS as in the
NHD model.

2.3. Specification to 2D TM mode

Nowwe can coupleMaxwell’s equation (1)with (9) for the NHD
model, or similarlywith (15) for theGNORmodel.Wewill compute
light extinction by infinitely long nanowires.We take thewire axes
along the z-direction and consider TM-polarized incident light,
i.e. polarized in the (x, y)-plane. In this 2D setting, we can define
E = (Ex, Ey)T to be a vector and H = Hz a scalar function. Coupling
the time-harmonic Maxwell’s equations and hydrodynamic Drude
model (9), we have in 2D⎧⎪⎪⎨⎪⎪⎩

∇ × H = −iωε0E + J, in Ω,

∇ × E = iωµ0H, in Ω,

∇(∇ · J) +
ω(ω + iγ )

β2 J =
iωω2

pε0

β2 E, in ΩS .

(16)

If the first-order Silver–Müller boundary condition (an artificial
absorbing boundary condition) [32] is applied on the boundary
∂Ω of the computational domain, then we have the boundary
conditions{
n × E − H = n × Einc

− H inc
= g inc, on ∂Ω,

n · J = 0, on ∂ΩS,
(17)

where Einc and H inc stand for the electromagnetic fields of the
incoming light.

3. HDG formulations of nonlocal optical response models

3.1. The promise of hybridizable DG methods

In the Introduction some properties and advantages of DG and
HDG methods were briefly mentioned, which we here explain
in more detail. The classic DG method is seldomly employed for
solving stationary problems, because it duplicates degrees of free-
dom (DOFs) on every internal edge. Thus the number of globally
coupled DOFs is much greater than the number of DOFs required
by conforming finite elementmethods for the same accuracy. Con-
sequently, DG methods are expensive in terms of both CPU time
and memory consumption. Hybridization of DG methods [21] is
devoted to addressing this issue while at the same time keeping all
the advantages of DGmethods. HDGmethods introduce additional
hybrid variables on the edges of the elements. Then we define
the numerical traces arising from partial integration in the DG
formulations through the hybrid variables. We can thus define the
local (element-wise) solutions by hybrid variables. Conservativity
conditions are imposed on numerical traces to ensure the continu-
ity of the tangential component of the electric field and the normal
component of the current density and to make the problem solv-
able. As a result, HDG methods produce a linear system in terms
of the DOFs of the additional hybrid variables only. In this way, the
number of globally coupledDOFs is greatly reduced as compared to
the classic DG method. In a recent study [33], the authors showed
that HDG methods outperform FEM in many cases.

3.2. Computational concepts and notations

In order to give a clear presentation of theHDGmethod, herewe
introduce some computational concepts and notations. We divide
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Fig. 2. Two neighboring discretization elements (here: triangles) within the com-
putational domain. An edge F is shared by two elements K+ and K− . The outward
normal vectors n+ and n− point in opposite directions. A characteristic property of
the DG method is that computed functions are allowed to be discontinuous across
F (hence the ‘‘D’’ in DG). For example, for a function v, be it a scalar or a vector, its
value on F from K+ is v+ , while its value on F from K− is v− , and these v+ and v−

are not necessarily equal. By contrast, the hybrid variables in the HDG method are
single-valued on F .

the computational domain Ω into triangle elements. The set of all
the triangles is denoted by Th. By Fh we denote the set of all edges
of Th. Furthermore, F I

h stands for the set of all the edges associated
with the nanostructure. For an edge associated with two elements
F = K+ ∩ K− ∈ Fh, let (v±, v±) be the traces of (v, v) on F
from the interior of K±, see Fig. 2, where we use the term trace
to denote the restriction of a function on the boundaries of the
elements [34]. Note that fromnowon v is used to describe a general
vector function instead of velocity. On every face, we define mean
(average) values {·} and jumps [[·]] as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{v}F =
1
2
(v+

+ v−),

{v}F =
1
2
(v+

+ v−),

[[n × v]]F = n+
× v+

+ n−
× v−,

[[n · v]]F = n+
· v+

+ n−
· v−,

[[vt]]F = v+t+ + v−t−,

where n± denotes the outward unit norm vector to K± and t±
denotes the unit tangent vectors to the boundaries ∂K± such that
t+ × n+

= 1 and t− × n−
= 1. For the boundary edges, either on

∂Ω or on ∂ΩS , these expressions are modified as⎧⎪⎪⎪⎨⎪⎪⎪⎩
{v}F = v+,

{v}F = v+,

[[n × v]]F = n+
× v+,

[[n · v]]F = n+
· v+,

[[vt]]F = v+t+.

Let Pp(D) denote the space of polynomial functions of degree at
most p on a domain D. For any element K ∈ Th, let V p(K ) be the
space Pp(K ) and Vp(K ) the space (Pp(K ))2. The discontinuous finite
element spaces are then defined by

V p
h =

{
v ∈ L2(Ω) | v|K ∈ V p(K ), ∀K ∈ Th

}
,

Vp
h =

{
v ∈ (L2(Ω))2 |v|K ∈ Vp(K ), ∀K ∈ Th

}
,

(18)

where L2(Ω) is the space of square integrable functions on the
domain Ω . We also introduce a traced finite element space

Mp
h =

{
η ∈ L2(Fh) | η|F ∈ Pp(F ), ∀F ∈ Fh

}
.

Note that Mp
h consists of functions which are continuous on an

edge, but discontinuous at its ends. The restrictions of V p
h , V

p
h and

Mp
h inΩS are denoted by Ṽ p

h , Ṽ
p
h and M̃p

h . For two vectorial functions
u and v in (L2(D))2, we introduce the inner product (u, v)D =∫
D u · v dx, where · denotes the complex conjugation. Likewise for

scalar functions u and v in L2(D), the inner product is defined as
(u, v)D =

∫
D uv dx provided D is a domain in R2. Finally we define

the edge overlap ⟨u, v⟩F =
∫
F uv ds, where F is a specific edge.

Accordingly, we can define the total edge overlap for the whole
triangulation or for relevant subsets of edges. Important cases are

⟨·, ·⟩Fh =

∑
F∈Fh

⟨·, ·⟩F , ⟨·, ·⟩∂Ω =

∑
F∈Fh∩∂Ω

⟨·, ·⟩F ,

⟨·, ·⟩F I
h

=

∑
F∈F I

h

⟨·, ·⟩F

denoting, respectively, the total edge overlap on the computational
domain, the cumulative edge overlap on the absorbing boundary of
the computational domain, and finally the cumulative edge overlap
on the nanostructure.

3.3. DG formulation of the coupled electrodynamical equations

We begin the construction of a DG implementation of the hy-
drodynamic Drude model by rewriting the coupled electrodynam-
ical equations (16) into a system of first-order equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

iωε0E + ∇ × H − J = 0 in Ω,

iωµ0H − ∇ × E = 0 in Ω,

∇q +
γ − iω

β2 J −
ω2

pε0

β2 E = 0 in ΩS,

iωq − ∇ · J = 0 in ΩS,

(19)

where we introduced the scalar function q = (iω)−1
∇ · J which

coincides with a scaled charge density. In general, a DG method
seeks an approximate solution (Eh,Hh, Jh, qh) in the spaceVp

h×V p
h ×

Ṽp
h×Ṽ p

h that for each element K (in our case: for each discretization
triangle) satisfies [35]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(iωε0Eh, v)K + (∇ × Hh, v)K − (Jh, v)K = 0 ∀v ∈ Vp(K ),
(iωµ0Hh, v)K − (∇ × Eh, v)K = 0 ∀v ∈ V p(K ),

(∇qh, v)K +

(γ − iω
β2 Jh, v

)
K

−

(ω2
pε0

β2 Eh, v
)
K

= 0 ∀v ∈ Ṽp(K ),

(iωqh, v)K − (∇ · Jh, v)K = 0 ∀v ∈ Ṽ p(K ).

(20)

The application of appropriate Green’s formulas to this system of
equations leads to terms on the element boundaries [34]. These
boundary terms are the keys to connect the elements, since the
elements themselves are independent due to the nature of the
discontinuous finite elements spaces of Eq. (18). In a DG method,
one replaces the boundary terms by so-called numerical traces
Êh, Ĥh, Ĵh and q̂h [21,36],which are also knownas ‘numerical fluxes’
in the literature [18]. These numerical traces are defined as⎧⎪⎪⎨⎪⎪⎩

Ĥh = {Hh} + αE[[n × Eh]],

n × Êh = {n × Eh} + αH [[Hh]],

q̂h = {qh} + αJ [[n · Jh]],
n · Ĵh = {n · J} + αq[[qh]].

(21)

In these definitions there is still freedom to choose values for the
α parameters, and this corresponds to different DG schemes: by
setting αE = αH = αJ = αq = 0, one obtains the centered flux DG
scheme. With αE = αH = αJ = αq = 1, one obtains the upwind
flux DG scheme [35]. For more validated DG schemes, we refer the
interested readers to Ref. [34]. Having defined thenumerical traces,
we finally form a global system of linear equations involving all the
DOFs on all the elements⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(iωε0Eh, v)K + (Hh, ∇ × v)K − ⟨Ĥh,n × v⟩∂K
− (Jh, v)K = 0 ∀v ∈ Vp(K ),

(iωµ0Hh, v)K − (Eh, ∇ × v)K − ⟨n × Êh, v⟩∂K = 0
∀v ∈ V p(K ),

−(qh, ∇ · v)K + ⟨q̂h,n · v⟩∂K +

(γ − iω
β2 Jh, v

)
K

−

(
ω2
pε0
β2 Eh, v

)
K

= 0 ∀v ∈ Ṽp(K ),

(iωqh, v)K + (Jh, ∇v)K − ⟨n · Ĵh, v⟩∂K = 0 ∀v ∈ Ṽ p(K ),

(22)
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which are coupled equations that are valid whatever DG scheme is
adopted.

3.4. Hybridizable DG implementation of the electrodynamical equa-
tions

In Section 3.1 we mentioned that hybridized DG methods have
advantages as compared to the classic DG schemes, and here we
discuss the hybridized approach inmore detail. Unlike in the above
classic DG formulationswhere the numerical traces directly couple
the values from the elements on both sides of the edges, in a
HDG formulation the numerical traces are defined through hybrid
variables. Introducing two hybrid variables λh and ηh which live
only on the boundaries of the elements, we define the numerical
traces by⎧⎪⎪⎨⎪⎪⎩

Ĥh = λh,

Êh = Eh + τλ(λh − Hh)t,
q̂h = ηh,

Ĵh = J + τη(qh − ηh)n,

(23)

where τλ and τη are two stabilization parameters. Replacing the
numerical traces in (22) with the expressions in (23) and applying
Green’s formulas to the second and fourth equations in (22), we
obtain the local formulation of the HDG method as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(iωε0Eh, v)K + (Hh, ∇ × v)K − ⟨λh,n × v⟩∂K − (Jh, v)K = 0,
∀v ∈ Vp(K ),

(iωµ0Hh, v)K − (∇ × Eh, v)K + ⟨τλ(Hh − λh), v⟩∂K = 0,
∀v ∈ V p(K ),

−(qh, ∇ · v)K + ⟨ηh,n · v⟩∂K +

(γ − iω
β2 Jh, v

)
K

−

(
ω2
pε0
β2 Eh, v

)
K

= 0, ∀v ∈ Ṽp(K ),
(iωqh, v)K − (∇ · Jh, v)K − ⟨τη(qh − ηh), v⟩∂K = 0,

∀v ∈ Ṽ p(K ).

(24)

One can solve the local fields element by element once the solu-
tions for λh and ηh are obtained. In order to make the problem
solvable, we need to employ global conditions{

⟨[[n × Êh]], v⟩Fh − ⟨λh, v⟩∂Ω = ⟨g inc,v
⟩∂Ω , ∀v ∈ Mp

h ,

⟨[[n · Ĵh]], v⟩F I
h

= 0, ∀v ∈ M̃p
h .

(25)

The first relation in (25) weakly enforces the continuity condition
for the tangential component of the electric field across any edges,
and also takes into account the Silver–Müller absorbing boundary
condition. The other global condition in Eq. (25) weakly enforces
the continuity condition for the normal component of the current
density across any edges. The additional boundary condition on the
surface of the nanostructure is implicitly contained in this relation.

Substituting Êh and Ĵh in (25) with the definitions in (23), we
arrive at the global reduced system of equations⎧⎨⎩

⟨n × Eh − τλ(λh − Hh), v⟩Fh − ⟨λh, v⟩∂Ω = ⟨g inc, v⟩∂Ω ,

∀v ∈ Mp
h ,

⟨n · Jh + τη(qh − ηh), v⟩F I
h

= 0, ∀v ∈ M̃p
h .

(26)

Note thatweused the fact thatn×t = −1 in (26). The two relations
in Eq. (26) are not independent. They are coupled through the local
solutions of E, H , J and q of the local equations (24).

Remark I. The proposed HDG formulation for the global system
(26) is naturally consistent with the boundary conditions, both on
the artificial boundary and on the medium boundary.

Remark II. In practice, we firstly solve the local problems (24), i.e.,
express the fields Eh,Hh, Jh and qh in terms of hybrid variables λh
andηh. Thenwe substitute the fields in (26)with these expressions.

Finally we build a system with unknowns λh and ηh only. So the
global DOFs are associated with λh in the whole computational
domain, while they are associated with ηh only within in the
material medium. The fields can be obtained by solving the local
problems (24) element-by-element. The discretization leads to a
system of linear equations

A
[
λh
η
h

]
=

[
g inc
h

0,

]
, (27)

where λh and η
h
are vectors accounting for the degrees of freedom

of the hybrid variables λ and η respectively, and the coefficient
matrix A is large and sparse. Similar details on how to obtain the
discretized linear system (27) can be found in [36,37].

4. Numerical results

In this section we present numerical results to validate the
proposed HDG formulations. All HDG methods have been imple-
mented in Fortran 90. All our tests are performed on a Macbook
with a 1.3 GHz Inter Core i5 CPU and 4 GB memory. We employ
the multifrontal sparse direct solver MUMPS [38] to solve the
discretized systems of linear equations.

In HDG methods, we calculate the total fields Etot and H tot. The
scattered fields are then calculated by subtracting the incident field
from the total fields. We use HDG-Pp to denote the HDG method
with interpolation order p. Here we choose fixed values τλ = τη =

1 for the stabilization parameters. Different choices are discussed
in Ref. [39].

4.1. Convergence study: wave propagation in a cavity

While elsewhere in this articlewe focus onnanowire structures,
here we first study the convergence of our method by considering
wave propagation in a cavity. This cavity is assumed to be a square
domain Ω□ = {(x, y) ∈ [0, L] × [0, L]} with the PEC boundary
condition and hard-wall condition

n × E = 0, and n · J = 0, on ∂Ω□.

This test case can be viewed as the frequency-domain version of
the first test case in [27]. The formulation of the test case reads⎧⎪⎪⎪⎨⎪⎪⎪⎩

iωε0E + ∇ × H = J − Ja,
iωµ0H − ∇ × E = 0,

∇q −
iω
β2 J = −

γ

β2 J +
γ

β2 J
a
+

ω2
pε0

β2 E −
ω2

pε0

β2 Ea,

iωq − ∇ · J = 0,

(28)

where artificial terms Ja and Ea are introduced such that we have
the following exact solution

Eexa
=

√
2
2

i

⎡⎢⎢⎢⎢⎣
− cos

(√
2
2

kx

)
sin

(√
2
2

ky

)

sin

(√
2
2

kx

)
cos

(√
2
2

ky

)
⎤⎥⎥⎥⎥⎦ ,

Jexa = −

√
2µ0kβ2

2ω

⎡⎢⎢⎢⎢⎢⎣
sin

(√
2
2

kx

)
cos

(√
2
2

ky

)

cos

(√
2
2

kx

)
sin

(√
2
2

ky

)
⎤⎥⎥⎥⎥⎥⎦ ,

(29)

with k =

√
ω2ε0µ0.

In our test, we take L = 20nm, k ≈ 2.22 × 108, ω ≈ 6.66 ×

1016, ωp ≈ 2.66 × 1016, β2
≈ 8.99 × 1016 and γ ≈ 2.66 × 1014.
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Table 1
Convergence results for the cavity problem.

h HDG-P1 HDG-P2 HDG-P3

Error Order Error Order Error Order

5−8 1.67 × 10−9 – 4.52 × 10−10 – 2.04 × 10−11 –
2.5−8 4.10 × 10−10 2.0 5.61 × 10−11 3.0 1.28 × 10−12 4.0
1.25−8 9.98 × 10−11 2.0 7.52 × 10−12 3.0 7.78 × 10−14 4.0
6.25−9 2.40 × 10−12 2.1 9.11 × 10−13 3.0 5.03 × 10−15 4.0

Fig. 3. Convergence history of the proposed HDG method for the cavity problem.

The convergence history of the HDG method with interpolation
order Pp (p = 1, 2, 3) is given in Table 1 and Fig. 3. Mesh size h is
the edge length of elements associated to the boundary ∂Ω□. The
convergence orders are calculated by

log(∥Eexa
− Eh

∥
h2
Ω□

/∥Eexa
− Eh

∥
h1
Ω□

)
log(h2/h1)

,

where h1 and h2 denote a coarse and a refined mesh size, re-
spectively. From Table 1 and Fig. 3, we observe that the proposed
HDG method has an optimal convergence order which is p + 1 for
HDG-Pp.

4.2. Benchmark problem: a cylindrical plasmonic nanowire

As our benchmark problemwe consider the plasmonic behavior
of a cylindrical nanowire. This has been used as a convenient
benchmark problem for other numerical methods before [28,40]
because analytical solutions exist both for the local and for theNHD
models, see the derivation in Ref. [41].Wemake use of the fact that
the analytical Mie solution of Ref. [41] allows making the nonlocal
parameter β complex-valued. This enables us to benchmark our
HDG simulations against exact analytical results for the GNOR
model as well. (For comparison, optical properties of a sphere in
the GNOR model, based on exact Mie results, are discussed in
Ref. [17].)

For the NHD model, the configuration of the nanowire is taken
to be the same as that in the first test in [28]: the radius of
the cylinder is 2 nm, no interband transitions are considered, the
plasma frequency ωp = 8.65 × 1015, the damping constant γ =

0.01ωp, the Fermi velocity vF = 1.07 × 106, and β2
=

3
5v

2
F . For

the GNOR model, we use the same parameters and furthermore
we take D = 2.04 × 10−4 [8]. An artificial absorbing boundary is
set to be a concentric circle with a radius of 100nm.

As our benchmark observable we will calculate the Extinction
Cross Section (ECS,σext), which is given by the sumof the scattering
cross section σsca and the absorption cross section σabs [42],

σext = σsca + σabs.

More precisely, for the cylindrical nanowire we consider the ex-
tinction cross section per wire length, which actually has the units
of a length. We scale this quantity by the diameter 2r of the
nanowire to obtain a dimensionless normalized extinction cross
section that we denote by σext. It can be expressed as the sum of
scaled scattering and absorption cross sections,

σsca =
1
2r

Re
∮
S
(Esca

× H
sca

) · n dS, and

σabs = −
1
2r

Re
∮
S
(Etot

× H
tot
) · n dS.

Here the integrations are performed along a closed path around the
nanowire, and Re denotes the real part.

All the simulations are performed on a mesh with 4513 nodes,
8896 elements and 13,280 edges of which 722 edges are located
inside the nanostructure. The ECS is presented in Fig. 4. Curvilinear
treatment is employed for high-order accuracy, where the curved
edges are geometrically approximated by second-order curves in-
stead of straight lines [36]. From Fig. 4 we can observe that the
fourth-order HDGmethod produces an ECS curve that matches the
analytical solution very well. By contrast, the first-order method
is not accurate enough on this mesh. Contour plots of the electric
field and the current density are presented in Fig. 5. Comparing the
two subfigures in Fig. 4, we also find that the ECS curve for the
GNOR model is smoother than for the NHD model. But this has a
physical rather than a numerical origin. In particular the standing
bulk plasmon resonances above the plasma frequency in the NHD
model are essentially washed out by the introduced diffusion in
the GNOR model. The ECS curves of HDG-P2 and HDG-P3 are not
presented in Fig. 4, but we found that they lie in between the
displayed curves of HDG-P1 and HDG-P4.

In our 2D simulations,we use a sparse direct solverMUMPS [38]
to solve the resulting systems of linear equations. We need to
solve a linear system at each frequency. The computational per-
formance mainly depends on the size of the coefficient matrices,
i.e. the number of degrees of freedom (#DOF). The computational
performance for one frequency is given in Table 2, where tconstruction
denotes the CPU time for construction of the matrices, tfactorization
denotes the CPU time used by MUMPS for the factorization of
the coefficient matrix A (27), and memory denotes the memory
consumed by MUMPS. From Table 2 we can see that the HDG-P4
is more expensive than HDG-P1 in CPU time for both construction
and factorization. However, high-order methods are preferable
because they cost less for the same accuracy [36].

4.3. Dimer of cylindrical nanowires

Plasmonic dimer structures with small gaps are both experi-
mentally interesting and computationally challenging because of
high field enhancements in the gap region [6,17,40]. Here we
present our HDG simulations of a cylindrical gold dimer geometry



L. Li et al. / Computer Physics Communications 219 (2017) 99–107 105

Fig. 4. Extinction cross section of a Na cylinder with 2 nm radius in a free-space background, for a TM-polarized normally incident plane wave. The cylinder is described
both by (a) the NHDmodel and by (b) the GNOR model. The simple wire geometry serves as an excellent benchmark problem: Analytically exact calculations (nonlocal Mie
theory) are compared with HDG methods of different interpolation order.

(a) Re(Ex). (b) Re(Ey). (c) Re(Jx). (d) Re(Jy).

(e) Re(Ex). (f) Re(Ey). (g) Re(Jx). (h) Re(Jy).

Fig. 5. The electric-field and current-density distributions of the light–matter interaction of a Na nanowire. In the upper row, we show the distributions on the fourth-order
nonlocal resonance at ω/ωp = 1.227 for the NHD model. For comparison, in the bottom row we show the corresponding distributions for the GNOR model.

(a) Configuration. (b) A mesh.

Fig. 6. A cylindrical gold dimer nanowire. Panel (a) The geometry of the nanowire dimer. An imaginary rectangle is introduced around the dimer for the calculation of the
cross section. Both nanowires have a radius r = 30nm and their gap distance is d = 3nm. Panel (b) A typical mesh. The large circle with a radius 300nm is the artificial
absorbing boundary.
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Table 2
Computational performance of the nanowire problem.

#DOF tconstruction (s) tfactorization (s) Memory (MB)

HDG-P1 28,260 0.067 0.36 74
HDG-P4 70,650 2.4 3.3 418

Fig. 7. Comparison of extinction cross sections of a gold dimer as calculated with
the local Drude model, the NHD model and the GNOR model. The configuration is
shown in Fig. 6 and the material parameters are given in Section 4.3.

as shown in Fig. 6(a), and this particular configuration is from
Ref. [29]. A typical mesh is shown in Fig. 6(b). On a mesh with
5829 nodes, 11,520 triangles and 17,348 edges with 3712 edges
inside the nanostructure, we calculate the ECS curve by HDG-P4.
The size of matrix for HDG-P1 is 105, 300 × 105, 300, the matrix
construction CPU time is 5.2 s, the factorization CPU time is 6.9 s
for one frequency, and the memory cost is 717 MB.

For the material properties of gold we use the same values as
in Ref. [40]: the plasma frequency ωp = 1.34 × 1016, damping
constant γ = 1.14 × 1014, the Fermi velocity vF = 1.39 × 106,
and the nonlocal parameter β is determined by β2

=
3
5v

2
F . The

incoming plane wave of light is incident perpendicular to the line
connecting the centers of the two circles, with a linear polarization
parallel to this line (TM- or p-polarization). A comparison of the
ECS curves is presented in Fig. 7. Overall, there are small but clear
differences, illustrating that nonlocal response effects occur even

for dimer structures for which the corresponding monomers (r =

30 nm nanowires) would show essentially no nonlocal effects [40].
Both nonlocal models have blueshifted resonances as compared
to the local model, and resonances in the GNOR model are less
pronounced than in the local and NHD models. For smaller gap
sizes, nonlocal blueshifts are larger and resonances are broadened
more (the latter only in the GNOR model). Field distributions at
the same particular frequency for the NHD and the GNOR models
are compared in Fig. 8. The figure illustrates the generic features
that the GNOR model washes out some finer details of the field
distributions, and also that minimal and maximal field values lie
closer together in the GNOR model.

5. Conclusions

This paper introduces a HDG method to solve the nonlocal hy-
drodynamic Drude model and the GNOR model, both of which are
often employed to describe light–matter interactions of nanostruc-
tures. The numerical fluxes are expressed in terms of two newly
introduced hybrid terms. Only the hybrid unknowns are involved
in the global problem. The local problems are solved element-
by-element once the hybrid terms are obtained. The proposed
HDG formulations naturally couple the hard-wall boundary con-
dition. Numerical results indicate that the HDGmethod converges
at the optimal rate. Our benchmark simulations for a cylindrical
nanowire and our calculations for a dimer structure show that the
HDGmethod is a promising method in nanophotonics. Building on
these results, in the near future we plan to generalize our compu-
tations to 3D structures, and to introduce domain decomposition
and model order reduction into nanophotonic computations.
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(a) Re(Ex). (b) Re(Ey). (c) Re(Jx). (d) Re(Jy).

(e) Re(Ex). (f) Re(Ey). (g) Re(Jx). (h) Re(Jy).

Fig. 8. Various field distributions in the gold dimer when illuminated by a plane wave of light. On the top line we show the distributions at the third SPR of the NHDmodel,
at ω/ωp = 0.66. On the second line we show the corresponding distributions in the GNOR model at the same frequency.
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