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The hydrodynamic Drude model, known from metal plasmonics, also applies to semiconductor structures of sizes
in between single-particle quantum confinement and bulk. In contrast to metals, however, for semiconductors
two or more types of plasma may have to be considered in order to properly describe their plasmonic properties.
In this combined analytical and computational study, we explore predictions of the recently proposed two-fluid
hydrodynamic Drude model for the optical properties of plasmonic semiconductor nanowires, in particular for
thermally excited InSb nanowires. We focus on the low-frequency acoustic surface and bulk plasmon resonances
that are unique fingerprints for this model and are yet to be observed. We identify these resonances in spectra for
single nanowires based on analytical calculations, which are in agreement with our numerical implementation
of the model. For dimers of nanowires, we predict substantial increase of the extinction cross section and field
enhancement of the acoustic localized surface plasmon resonance, which makes its observation in dimers more
likely. ©2019Optical Society of America

https://doi.org/10.1364/JOSAB.36.002712

1. INTRODUCTION

Plasmonic structures have attracted interest and found applica-
tions due to their ability to concentrate light on subwavelength
scales and to greatly enhance electromagnetic fields [1–6]. The
Drude model is one of the most prevalent models to describe
metal properties. However, as the dimensions of metal struc-
tures approach the nanoscale, some plasmonic phenomena can
no longer be explained by the classical Drude model. To explain
these observed effects, such as the size-dependent blueshift of
the resonance frequency of the localized surface plasmon (LSP)
and confinement effects of bulk plasmons [7,8], the semiclas-
sical hydrodynamic Drude model (HDM) has often been used
[9–18]. The linearized version of this model is similar to the
Drude model but with spatial dispersion included, which means
that the polarization depends nonlocally on the electric field.

The HDM has recently been employed to describe mate-
rials other than metals that also have an electron plasma. As
for metals, it is widely accepted that the plasmonic properties
of bulk and large semiconductor structures are well described
using the Drude model [19–23]. In the other extreme case,
semiconductor structures on the few-nanometer scale, such as
quantum wells and dots, are described by quantum mechanical

models for single- and few-electron excitations [24,25]. For the
intermediate regime, i.e., for sizes in between single-particle
quantum confinement and bulk, the HDM model has recently
been applied [26–28]; indeed, characteristic hydrodynamic
resonances have been observed [27] in semiconductors.

Semiconductors have different bulk plasmonic properties
than metals. It is well known that their lower charge carrier
densities give rise to a lower plasma frequency; therefore,
the frequencies of operation will be in the infrared or THz
bands instead of the visible and near-UV regions as for metals.
However, because of the larger associated plasma wavelengths,
nonlocal effects will generally be observable in larger structures
for semiconductors than for metals. This can be convenient
when dedicatedly fabricating structures in order to observe
their nonlocal effects [27], but it also means that semiconductor
devices in general may exhibit unforeseen nonlocal behaviors.
The capability of adjusting and controlling charge carrier den-
sities by varying temperature or doping levels are well-known
advantages of semiconductors [29], which allows for the design
of tunable metamaterials (see, for example, [30,31]). This tun-
ability also facilitates the identification of nonlocal-response
behavior in semiconductors, as we will see in this paper.
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The HDM considers only one of the possible kinds of
charge carriers in semiconductors. Typically, only electrons are
included in the calculations, and this is a reasonable approxima-
tion when electrons are present as the majority carriers because
their smaller effective mass compared with the holes causes them
to dominate the optical properties. However, to account for the
different kinds of charge carriers, an extension of the HDM that
considers two different plasmas or fluids can be applied, which
is the idea of the recently proposed two-fluid hydrodynamic
Drude model [28]. In this model, two different branches of
resonances are formed, optical and acoustic, both depending
on properties of the electron and hole plasmas. Notably, the
acoustic branch is a unique signature of the two-fluid model
[28], as it is absent in the single-fluid HDM. A different version
of the two-fluid model has also been applied to electrolytes and
ions [32], which are other examples of systems with multiple
fluids.

In this paper, we will use the two-fluid model of [28] to study
the optical properties of semiconductor monomers and dimers
of nanowires. There are many actively studied and technologi-
cally important semiconductor nanowire materials (see, for
example, the recent review by Joyce et al. [33]), and we will focus
on indium antimony (InSb) nanowires, which can be fabricated
with high quality [34,35]. We will initially consider the two-
fluid model for monomers of nanowires, where we will see the
appearance of acoustic plasmon resonances that are absent in
the single-fluid HDM. The monomer geometry also allows us
to compare our numerical implementation with the analytical
solution, and we find excellent agreement between the two.
Then, we present simulations of dimers of nanowires to study
the consequences of the field enhancement in the gap between
the nanowires, and we will show that the acoustic plasmonic
resonance is enhanced for this dimer configuration compared
with the monomer. This suggests a way for experimental confir-
mation of the two-fluid model using semiconductor nanowire
dimers.

With our hydrodynamic two-fluid model, we are not the first
to predict the existence of acoustic plasmons. Following the
seminal work of Pines [36], there have been many theoretical
and experimental studies of acoustic plasmons, which have been
reported to exist on metal surfaces and on 2D materials [37–41].
For semiconductor structures, the situation is less clear. One of
the advantages of our model compared with other more micro-
scopical models is that it is simple enough to allow one to study
complex plasmonic nanostructures where the acoustic plasmons
may be enhanced.

2. TWO-FLUID MODEL AND ANALYTICAL
RESULTS IN K-SPACE

The two-fluid hydrodynamic model considers two types of
charge carriers or fluids, such as electrons and holes (or light
and heavy holes) in a semiconductor. This model describes
each plasma, labeled a and b, with a hydrodynamic equation
of motion for the associated current densities Ja and Jb , while
the classical Maxwell wave equation describes the linear optical
properties. The governing equations for the two-fluid model are
thus [28]

β2
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ω2 + iγaω
∇(∇ · Ja )+ Ja =

iωε0ω
2
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ω2 + iγaω
E, (1a)

β2
b
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c 2
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Here, ωa and ωb are the plasma frequencies, γa and γb are the
damping constants, and βa and βb are the nonlocal parameters
for the fluids a and b, respectively. From Eq. (1), it is clear that
both plasmas are driven by the same electric field, while in turn
the electric field is driven by the sum of the two current densities.

To obtain our analytical results for the nanowires below, we
will make use of the longitudinal and transverse wavenumbers
in the two-fluid model [28] that we briefly present here. By
transforming Eq. (1) to k-space, two different longitudinal
wavenumbers (both denoted by the subscript ‘L ’) are obtained
with dispersion relations
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These two longitudinal modes are the result of hybridization
of the two different kinds of charge carriers, and the dispersion
relations are displayed in Fig. 1 of [28]. The hybridization is
essentially caused by the electric field, which is present in both
hydrodynamic equations [Eqs. (1a) and (1b)] and thus causes
the two current densities to couple.

Here, we review the properties of the two modes in some
detail. We define kL,2(ω) to be the minus (“−”) solution in
Eq. (2a), and it corresponds to an optical longitudinal mode,
analogous to the optical longitudinal mode at the plasma
frequency within the local Drude model. The single-fluid
hydrodynamic model also has such an optical longitudinal
mode. The lowest frequency at which the optical longitu-
dinal mode exists within the two-fluid model is ωeff/

√
ε∞,

where we have introduced the effective bare plasma frequency
ωeff = (ω

2
a +ω

2
b)

1/2. This minimal frequency can be found by
putting kL,2(ω) to zero while neglecting γi in Eq. (2a). Below
this frequency, kL,2(ω) becomes primarily imaginary, which
means that no propagating longitudinal optical modes exist.

As mentioned in the Introduction, however, the decisive
new feature for the two-fluid model as compared with both the
single-fluid HDM and the local Drude model is the existence
of an acoustic longitudinal mode. Its wavevector is denoted by
kL,1(ω), which corresponds to the “+” solution of Eq. (2a).
In stark contrast with the optical mode, this acoustic mode
exists all the way down to zero frequency, as can be found
by putting kL,1(ω) to zero. Therefore, the two-fluid model
exhibits longitudinal acoustic excitations and resonances in the
low-frequency region below ωeff/

√
ε∞ where no longitudinal

optical modes exist. The additional low-frequency resonances
are a characteristic feature of the two-fluid model.
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Besides the longitudinal wavenumbers, there is also a
transverse wavenumber given by

k2
T =

ω2

c 2
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ε∞ −

ω2
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ω2 + iγaω
−

ω2
b

ω2 + iγbω

)
, (3)

featuring two Drude-like response terms. The plasma frequen-
cies and damping constants, which also were used in Eqs. (1)
and (2), are given by [42]

ω2
i =

e 2ni

ε0m∗i
, γi =

e
m∗i,condµi

. (4)

Here, ni and m∗i are the charge-carrier densities and the density-
of-states effective masses, respectively, and the m∗i,cond are the
conductivity effective masses. Furthermore, the damping con-
stants γi depend on the respective charge-carrier mobilities µi .
The nonlocal parameters βi depend on the nature of the charge
carriers, and, for thermally excited charge carriers in an intrinsic
semiconductor, they are given by [26,28]

β2
i =

3kB T
m∗i

, (5)

where T is the temperature, and kB is the Boltzmann constant.
This expression is only valid for temperatures low enough for the
Fermi–Dirac distribution to be approximated by the Boltzmann
distribution.

A. Two-Fluid Model for a Single Nanowire: Analytical
Results

In this paper, we will analyze the two-fluid model for finite
systems by focusing on semiconductor nanowires and, to
begin with, a single wire. Let us first mention that, recently,
Mie coefficients for the two-fluid model in spherical geometry
were derived [28], where, in comparison with HDM, a second
longitudinal wave was accounted for, namely, the acoustic one.
Analytical solutions exist for infinite cylindrical wire geometries;
for the Drude model, these can be found in textbooks [43]. For
the linearized (single-fluid) HDM, analytical solutions were
obtained both in the quasi-static limit [44] and in the fully
retarded case [45–47] and recently also for the full nonlinear
HDM [48]. For the linearized two-fluid model, analytical
solutions have not yet been obtained for nanowires, and we will
therefore derive them here.

We will calculate the extinction cross section for a single
nanowire of radius R by assuming an incident plane wave with
the electric field polarized perpendicular to the cylinder axis
(TM modes) because longitudinal modes may only be excited
by this polarization (and not by TE modes). The incident field
Ei and the resulting scattered (reflected) wave from the nanowire
Er are given by [43]
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where the Jn and H(1)
n are the Bessel and Hankel functions of the

first kind, respectively. Here, xD ≡ RkD and kD ≡
√
εDω/c ,

where εD is the permittivity of the surrounding dielectric. The
coefficients an of the scattered wave are still to be determined.
The transmitted wave into the nanowire (inside the cylinder)
Et contains, in addition to the transversal field, two different
longitudinal fields, such that Et = ET

+ EL with
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with expansion coefficients g n for the transverse waves and h1n

and h2n for the two longitudinal waves that are also still to be
determined. The differentiation (denoted with the prime) is
with respect to the argument. The definitions xT ≡ RkT and
x j ≡ RkL, j have been used in Eq. (7), where kT and kL, j are
given by Eq. (3) and Eq. (2a), respectively. Thus, in the cylinder
the same optical and acoustic longitudinal waves exist as in the
infinite two-fluid medium, and their amplitudes h1n and h2n

quantify how well these waves can be externally excited by a
plane wave and resonate within the confines of the cylinder.

The unknown wave amplitudes are determined by applying
boundary conditions. The continuities of E‖ and B‖ across
boundaries are consequences of Maxwell’s equations and pro-
vide us with the first two boundary conditions. The “hard-wall”
additional boundary condition (ABC) J⊥ = 0, which implies
that the charge carriers cannot leave the surface, is used widely
for the HDM. The two-fluid model requires two ABCs; here, we
will follow [28] and use the conditions Ja ,⊥ = 0 and Jb,⊥ = 0.
We hereby obtain the linear system of equations as presented
in Appendix A, from which all coefficients can be found. Of
primary interest in order to calculate the extinction cross section
are the coefficients an , which are given by

an =
−
√
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Here, the parameter 1n accounts for the nonlocality of both
plasmas and is given by
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where A and C j are given by
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In the limit 1n→ 0, the cylinder scattering coefficient an

indeed reduces to the local-response expression. We are inter-
ested in the extinction cross section (σext) per unit length of the
cylinder, which becomes the dimensionless normalized cross
section Cext after dividing by the wire diameter. In terms of the
amplitudes an , this normalized extinction cross section is given
by [45]

Cext =−
2

kD R

∞∑
n=−∞

Re(an). (11)

This expression is valid for all the models we consider; the
differences between the models show up as different expressions
for the coefficients an .

3. TWO-FLUID MODEL FOR A SINGLE
NANOWIRE: NUMERICAL RESULTS AND
BENCHMARK

To investigate the properties of the two-fluid model, we start
with analyzing an artificial semiconductor material, where
damping constants have been set low to easily identify the indi-
vidual characteristic resonances. After that, we will consider the
intrinsic semiconductor indium antimonide (InSb).

We calculate the spectrum for a single cylindrical nanowire
both analytically [using Eq. (11)] and numerically, which will
also benchmark our numerical implementation. Numerical
calculations are performed using a commercially available finite-
element-based package (COMSOL 5.3a). Our implementation
of the two-fluid model is a generalization of the one for the
HDM by Toscano et al. [47], for which the code is freely avail-
able [49]. In our simulations in two dimensions, the nanowire
is embedded into a big rectangular computational domain of
air, and the structure is terminated by perfectly matched layers
(PMLs) to provide an approximately reflection-free termina-
tion of the free-space domain. The extinction cross section is
obtained by numerically integrating the Poynting vector on
a circle surrounding the nanowire. Figure 1 shows spectra for
a single nanowire with radius R = 10 nm and with further
parameters given in the caption. The spectrum in Fig. 1 has been
normalized with the diameter of the nanowire and is presented
as a function of the scaled frequencyω/ωeff.

Clearly, in Fig. 1 the numerical and analytical spectra for the
two-fluid model overlap completely. The nanowire thus serves
as a benchmark problem that shows that our numerical imple-
mentation of the model is reliable. This is, as far as we know,
the first numerical implementation of the two-fluid model

Fig. 1. Extinction spectrum of a semiconductor nanowire with
parameters ωa = 3.6× 1014 s−1, ωb = 1.8× 1014 s−1, γa = γb =

1.0× 1012 s−1, βa = 4.3× 105 ms−1, βb = 1.6× 105 ms−1, and
ε∞ = 5, with R = 10 nm and εD = 1. The solid blue line is the
numerical solution of the two-fluid model, and it overlaps the cor-
responding analytical solution shown with the dashed red line. For
comparison, the local Drude model is shown with the dashed black
line. In all cases, the incident light is a TM-polarized plane wave
normally incident on the nanowire.

that was introduced in [28], and it will allow us in Section 4
to employ the numerical implementation with confidence—
also for geometries more complex than single wires. The black
dashed line in Fig. 1 is the local-response approximation (LRA)
obtained by setting 1n equal to zero in Eq. (8). This spectrum
only shows a single peak, namely, the dipole LSP peak. Neither
in the LRA nor in the single-fluid HDM are there plasmonic
resonances of a single plasmonic particle below the dipole LSP
peak. For the two-fluid model, however, several such peaks are
visible in the spectrum of Fig. 1, which are thus characteristic
of the two-fluid model. From our discussion of the modes, it is
clear what these resonances are: they are resonances of the acous-
tic longitudinal mode that, for the two-fluid model, exists down
to zero frequency. For this reason, they can be called “acoustic
peaks,” as is done in Fig. 1. Analogous resonances of acoustic
modes in single spheres were reported in [28].

It is well known for the single-fluid HDM that the LSP reso-
nance blueshifts compared with the local-response model [50];
recently, it was found that the relative nonlocal blueshift for
semiconductors typically is much larger than for metals [26].
Here, we see again a large blueshift of the optical LSP peak (com-
pare the highest peaks in the Drude and two-fluid spectra) for
nanowires in the two-fluid model. In Fig. 2, we further investi-
gate the nonlocal blueshift for a nanowire. Figure 2(a) shows the
blueshift of the LSP resonance relative to the plasma frequency
as a function of R (same material as in Fig. 1); as expected, we
see an increase of the blueshift as the radius is reduced. Apart
from the LSP resonance, the size of the wire also affects the
spectral position of other peaks. An example of this is presented
in Fig. 2(b), which shows how the first of the acoustic peaks is
blueshifted as the radius is reduced (similar to the behavior of
the LSP resonance).

For selected resonant modes in the spectrum of Fig. 1, we
depict in Fig. 3 the absolute values of the charge distribution
and the electric-field distribution of the nanowire in the left
and right panels, respectively. As before, the incident light is a
TM-polarized plane wave normally incident on the wire, with
the electric field polarized in the x -direction.
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(a)

(b)

Fig. 2. (a) Relative blueshift of the LSP resonance defined as
1ω/ωeff, where 1ω=ωLSP(two− fluid)−ωLSP(LRA) is shown as a
function of R . Same material parameters as for the monomer in Fig. 1.
(b) Comparison of extinction spectra for various radii R = 10 nm,
20 nm, 30 nm, 40 nm, and 50 nm in the vicinity of the first acoustic
peak.

Figure 3(a1) corresponds to the first peak of the spectrum
in Fig. 1, and we see a high charge density near the surface,
which indicates that this is an LSP mode. Thus, we identify
and henceforth call this first peak “acoustic LSP.” Figure 3(a2)
shows the charge distribution of the second peak, and we see
that this is a bulk plasmon with a high charge density near the
center. The charge distribution for the dipole LSP peak is shown
in Fig. 3(a3). We will henceforth call this peak “optical LSP,”
and, although it is a surface plasmon, we see from the figure that
it also has the signature of a bulk plasmon. This is caused by
mixing of the LSP and the bulk plasmon nearby. In Fig. 3(b), we
depict the electric-field distributions for the discussed modes; in
Fig. 3(b3), one can see field enhancement both at the wire edge
and in its center, illustrating the hybrid character with bulk and
localized surface plasmon characteristics combined.

After studying the different aspects of the two-fluid model
for a nanowire with artificially low damping, we will now
consider a realistic semiconductor and choose intrinsic
InSb with thermally excited charge carriers. For the InSb
nanowire, we take R = 100 nm and T = 300 K, with elec-
trons (e ) as the a-fluid and holes (h) as the b-fluid. We then
use Eqs. (4) and (5) with data from Table 1. This gives us ωe =

6.328× 1013 s−1, ωh = 1.115× 1013 s−1, γe = 1.990×
1012 s−1, γh = 6.674× 1012 s−1, βe = 1.090× 106ms−1,
and βh = 1.920× 105 ms−1. In Fig. 3(a), we compare the
corresponding extinction spectra for three models: the Drude
model, the HDM, and the two-fluid model. The spectrum for
the single-fluid HDM is obtained by including only electrons
in the calculation, which means that the parameters are given
by ωp =ωe , β = βe , and γ = γe . As we expect, the Drude
model only results in one peak: the optical dipole LSP, just like

Fig. 3. Absolute values of the charge distribution and the electric-
field distribution of the same nanowire as in Fig. 1. The left panels
labeled (a) depict the charge distributions (C/m3), and panels on
the right labeled (b) show the norm of the electric field (V/m) for
three selected modes. The incident electric field is polarized in the
x -direction.

Table 1. Material Parameters for InSb at Various
Temperatures

a

T = 200 K T = 300 K T = 350 K T = 400 K Refs.

ε∞ 15.68 15.68 15.68 15.68 [51]
E g [eV] 0.200 0.174 0.160 0.146 [52]
µe [cm2/Vs] 151000 77000 60000 48000 [51]
µh [cm2/Vs] 1910 850 620 480 [51]
m∗e /m0 0.0125 0.0115 0.0108 0.0100 [53]
m∗e ,cond/m0 0.0125 0.0115 0.0108 0.0100 [53]
m∗lh/m0 0.016 0.016 0.016 0.016 [51]
m∗hh/m0 0.37 0.37 0.38 0.40 [54]
a
The sources of the values can be found in the rightmost column. Note that

the conductivity effective mass for the electrons m∗e ,cond is assumed to be equal
to the density-of-states effective mass m∗e , and that the value for m∗lh is for
T = 20 K [51].

in Fig. 1. The blueshift of the corresponding resonance in both
nonlocal models is substantial and practically identical in the
two cases.

The optical LSP peak is followed by several bulk plasmon
peaks, the first two of which are shown in Fig. 4(a). Comparison
to Fig. 1 (showing the artificial semiconductor) reveals that only
one of the acoustic peaks is visible at low frequency. In particular,
only the low-frequency acoustic LSP peak is visible in Fig. 4(a)
while the acoustic bulk peaks are not. Thus, the noteworthy
difference between the two nonlocal models (two-fluid model
and HDM) for the InSb nanowire is the existence of an acoustic
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Fig. 4. Extinction spectra for a single nanowire in vacuum with
R = 100 nm made of intrinsic InSb. See Table 1 and main text for
the material parameters of the InSb. (a) At T = 300 K for three
models: the black line is the local Drude model, the red line is the
two-fluid model, and the blue dashed line is the (single-fluid) HDM.
(b) Comparison of extinction spectra at T = 200 K, 300 K, 350 K,
and 400 K.

LSP peak in the two-fluid model below the optical LSP peak. At
higher frequencies, the holes and electrons de-hybridize [28],
and the extinction curves of the two nonlocal models overlap
almost completely.

In Fig. 4(b), we compare the extinction spectra for various
temperatures (T = 200 K, 300 K, 350 K, and 400 K) for the
same nanowire as in Fig. 4(a). At higher temperatures, the
peaks broaden and shift toward the blue, and we find an overall
increase of the extinction cross section. The reason is that the
density of electrons in the conduction band and the density of
holes in the valence band increase as the temperature rises (as
predicted by the Fermi–Dirac distribution). The increase of free
charge carriers results in (a) a larger extinction cross section and
(b) higher plasma frequencies [according to Eq. (4)], which in
turn gives more blueshifted spectral features. The temperature
also affects the beta parameter according to Eq. (5), but the
effects of this are smaller.

4. DIMERS OF CYLINDRICAL NANOWIRES

Here, we study within the two-fluid model both the extinction
cross section and the electric-field intensity enhancement of
dimers of cylindrical nanowires. This study is enabled by our
numerical implementation of the model that we validated in
the previous section. We consider a dimer of the same artificial
low-loss material as for the nanowire in Fig. 1. As an archetypical
plasmonic dimer structure, we consider two identical and par-
allel cylindrical nanowires, with the same radii of R = 10 nm
and separated by a gap distance of d = 1 nm. Extinction spec-
tra normalized with the diameter of the nanowire are shown

(a)

Fig. 5. (a) Extinction spectra for a semiconductor dimer of
R = 10 nm and d = 1 nm (same material as in Fig. 1). The blue
curve is for the monomer, while the green and red curves correspond
to dimers excited by a normally incident plane wave with the electric
field normal to and along the dimer axis, respectively. (b) Normalized
field intensities of monomer (dashed blue line) and dimer (solid red
line) in the vicinity of the acoustic LSP. The intensity for the dimer is
evaluated in the middle of the gap; for the monomer, the value is taken
at the same position with the right cylinder removed.

in Fig. 5(a), where two different excitation directions, along
and normal to the dimer axis, are compared with a monomer
identical to the single nanowire of Fig. 1.

Figure 5(a) shows that the incident wave with an electric
field polarized parallel to the dimer axis gives a stronger acoustic
resonance than for the perpendicular polarization direction. In
that sense, the acoustic modes behave similar to the well-known
optical LSP modes in dimers, but the enhancement of the
acoustic mode is not as pronounced (comparison not shown).
Another aspect worth mentioning is that the spectral position
of the acoustic LSP mode in Fig. 5(a) is practically constant
in all studied cases (monomer and dimer excited in the two
directions), whereas the position of the optical LSP mode of
the dimer (highest peak of green and red curve) is considerably
shifted with respect to the (blue) monomer resonance. One
could interpret this as a complete absence of hybridization of the
acoustic LSP modes of the two cylinders, but this conclusion is
too rash, as Fig. 5(b) illustrates.

Figure 5(b) shows the corresponding intensity normalized
with the incident intensity, close to the acoustic LSP peak.
The excitation is polarized along the dimer axis, as it was for
the red curve in Fig. 5(a). We see how the dimer increases the
electric-field intensity in the narrow gap between the two
nanocylinders. The increase is by a factor of 13 in comparison
with a single nanowire at the same distance. This shows that, in
the experimental pursuit of acoustic plasmon resonances, it can
be advantageous to study dimers, where these resonances are
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stronger. It also suggests that the acoustic LSP modes of the two
cylinders do hybridize but not strongly enough so as to produce
an observable resonance shift in Fig. 5(a).

In Fig. 6, we illustrate the effect of the gap distance for the
same type of dimers as above. Comparison of Panels (a) and
(b) shows the familiar increasing hybridization redshift of the
optical LSP as the gap distance is reduced [55]. By contrast, the
spectral position of the acoustic peak appears to be independent
of the gap distance. The latter is consistent with our findings
in Fig. 5: If a gap distance of 1 nm [in Figs. 5 and 6(a)] is not
small enough to give an observable peak shift of the acoustic LSP
compared with the monomer, then the gap distance of 10 nm
in Fig. 6(b) will surely not show such a shift. The enhancement
of the acoustic resonance, however, for the dimer as compared
with the monomer is larger in Fig. 6(a) than in 6(b), as expected.
Furthermore, note that Fig. 6(a) displays several peaks that are
absent in Fig. 6(b). These are higher-order modes that can be
excited because of the inhomogeneous field of the dimer, an
effect that is amplified as the gap becomes narrower.

Finally, we analyze the extinction spectra for dimers of intrin-
sic InSb. We will compare the different models (local Drude
model, single-fluid HDM, and two-fluid model) as well as study
the influence of gap size and of temperature, as these are vari-
ables that may be controlled in experiments. We keep the radius
fixed at R = 100 nm and consider an incoming wave with the
electric field polarized parallel to the dimer axis.

Figure 7(a) shows that, similar to Fig. 4(a) for monomers, the
two-fluid model and HDM coincide for higher frequencies,
and that the only difference is the acoustic peak at low frequency
for the two-fluid model. Below the optical LSP resonance, the
spectra in Figs. 7(a)–7(c) show just one of the acoustic peaks,
which is the acoustic LSP peak, while the others are invisible
mainly because of the low mobility of the holes. In Fig. 7(b), the

Fig. 6. Extinction spectra for a semiconductor dimer of R = 10 nm
with a gap size of (a) d = 1 nm and (b) d = 10 nm compared with a
monomer. The material parameters are the same as for the monomer
in Fig. 1.

Fig. 7. Extinction spectra for nanowire dimers of intrinsic InSb
with radius R = 100 nm in vacuum. (a) For d = 10 nm and
T = 300 K we compare three models: the black line is the local
Drude model, the red line is the two-fluid model and the blue dashed
line is the (single-fluid) HDM. (b) For T = 300 K, various gap sizes
of d = 1 nm, 10 nm, 100 nm, and 500 nm are compared with the
corresponding monomer. (c) For a gap distance of d = 10 nm, we
compare the temperatures T = 200 K, 300 K, 350 K, and 400 K
[same parameters as for the monomer in Fig. 4(b)].

extinction spectra are shown for different gap sizes at a constant
temperature of T = 300 K; here, we see that nonlocal features
are more pronounced for smaller gap sizes. Most important
for the present study is that the elusive acoustic resonance is
also enhanced [compare the green curve with the others at low
frequency in Fig. 7(b)]. This means that, for the experimen-
tal observation of acoustic plasmon resonances, it would be
advantageous to consider dimer structures with small gaps. As
expected, the dimer enhances several resonances and also shows
some new ones compared with the monomer. In Fig. 7(c), we
compare the extinction spectra for various temperatures while
keeping the gap distance at d = 10 nm. Here, we see that higher
temperatures shift resonances toward the blue, as expected,
but also that the acoustic resonance at all temperatures consid-
ered is enhanced by the dimer as compared with the monomer
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[compare with Fig. 4(b)]. At higher temperatures, the acous-
tic resonance is somewhat flatter and unpronounced; thus, it
appears that increasing the temperature is not as advantageous
for observing the acoustic plasmon as decreasing the gap size
would be [see Fig. 7(b)].

5. SUMMARY AND CONCLUSIONS

In this paper, the two-fluid hydrodynamic Drude model was
studied analytically and, for the first time, also numerically,
allowing dimers to be studied. The model is an extension of
the traditional, single-fluid HDM, and it accounts for two
different kinds of free charge carriers (or fluids) such as, e.g.,
electrons and holes or light and heavy holes. We analyzed the
two-fluid model for semiconductor nanowires; here, we focused
on intrinsic InSb, although the model is expected to apply
to other small-band-gap thermally excited semiconductors
as well.

For a low-loss single nanowire within the two-fluid model,
many peaks other than the optical LSP are visible in the spec-
trum, also at frequencies below the optical LSP. None of these
monomer resonances exist in the local response Drude model,
and several are not present in the single-fluid HDM, either.
Additional resonances were identified using the dispersion
relation of bulk systems within the two-fluid model. The model
predicts two different longitudinal modes, optical and acoustic,
where the latter exists as a propagating mode even down to
zero frequency. An acoustic LSP and several acoustic bulk plas-
mon peaks were identified in the extinction spectra for single
nanowires, all of which are characteristic of the two-fluid model.

We used the analytical results for single nanowires to
benchmark our COMSOL numerical implementation of
the two-fluid model, and the quantitative agreement was excel-
lent. This allowed us to continue with the numerical studies of
dimers, where we focused on the acoustic modes. We showed
that the dimer enhances the acoustic resonance in the extinction
spectrum and also increases the field intensity in the narrow
gap between the two nanocylinders. The InSb intrinsic semi-
conductor nanowires with thermally excited charge carriers
that we studied have just one visible acoustic resonance in their
extinction spectra, namely, the acoustic LSP, while acoustic
bulk peaks are invisible both for monomers and dimers. More
importantly, for dimers we find that, by decreasing the gap
distance, nonlocal effects are increased and the acoustic reso-
nance becomes stronger. This illustrates that, more generally,
it can be useful to design complex semiconductor structures
to increase the chances of experimentally observing acoustic
plasmons.

APPENDIX A: LINEAR EQUATIONS FOR A
SINGLE NANOWIRE IN THE TWO-FLUID MODEL

When applying the boundary conditions that are mentioned in
the main text to the electric and magnetic fields, we obtain the
following system of linear equations:
√
εD Jn(xD)+ an

√
εD H(1)

n (x D)= g n
√
εT Jn(xT), (A1a)

J ′n(x D)+ an H(1)′
n (xD)

= g n J ′n(xT)−
in
x1

h1n Jn(x1)−
in
x2

h2n Jn(x2), (A1b)

g n
in
xT
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a ε∞k2
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)
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+ h2n

(
1+
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a ε∞k2

L,2

ω2
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)
J ′n(x2)= 0, (A1c)

g n
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xT

Jn(xT)+ h1n

(
1+
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b ε∞k2

L,1

ω2
b(1+ α

−1
1 )

)
J ′n(x1)

+ h2n

(
1+

β2
b ε∞k2

L,2

ω2
b(1+ α

−1
2 )

)
J ′n(x2)= 0. (A1d)

By solving this system of linear equations, the unknown coeffi-
cients an can be found directly.
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