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We present a microscopic quantum theory of light-matter interaction in pristine sheets of two-dimensional
semiconductors coupled to localized electromagnetic resonators such as optical nanocavities or plasmonic
particles. The light-matter interaction breaks the translation symmetry of excitons in the two-dimensional lattice,
and we find that this symmetry-breaking interaction leads to the formation of a localized exciton state, which
mimics the spatial distribution of the electromagnetic field of the resonator. The localized exciton state is in turn
coupled to an environment of residual exciton states. We quantify the influence of the environment and find that
it is most pronounced for small lateral confinement length scales of the electromagnetic field in the resonator,
and that environmental effects can be neglected if this length scale is sufficiently large. The microscopic theory
provides a physically appealing derivation of the coupled-oscillator models widely used to model experiments on
these types of systems, in which all observable quantities are directly derived from the material parameters and
the properties of the resonant electromagnetic field. As a consistency check, we show that the theory recovers the
results of semiclassical electromagnetic calculations and experimental measurements of the excitonic dielectric
response in the linear excitation limit. The theory, however, is not limited to linear response, and in general
describes nonlinear exciton-exciton interactions in the localized exciton state, thereby providing a powerful
means of investigating the nonlinear optical response of such systems.
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I. INTRODUCTION

Over the last decade, there has been a growing interest in
excitonic properties of two-dimensional (2D) semiconductors,
especially in monolayers of the transition-metal dichalco-
genide family [1]. Owing to a direct band gap in the visible
frequency range and large exciton binding energies, these
materials are particularly interesting for polaritonic physics
and technology [2]. Indeed, pristine sheets of these materials
have been interfaced with optical nanocavities or plasmonic
resonators, leading to coupling strengths of the order of
100 meV [3-10]. Different models have been used to de-
scribe the experiments and to account for the fact that the
high interaction strengths have been reached even without
the need for careful positioning of the nanoresonator to align
it with a local defect in the 2D material. Phenomenological
treatments originating in the quantum optics literature view
the electronic excitations in the 2D material that couple to
the resonant electromagnetic field as a collection of N inde-
pendent dipole particles, where N is typically fitted to match
the experimentally observed light-matter coupling strength
[3,6-8,10]. Within such N-dipole theories, the effective light—
matter coupling strength is proportional to \/N/V, where V
is an effective electromagnetic mode volume. Although the
phenomenological models can be well fitted to experimental
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data, there appears to be no convincing microscopic theory
explaining the origin or nature of the dipolar particles in
the seemingly pristine 2D materials. As a consequence, the
usefulness of the quantum optical concepts has been ques-
tioned [11], and it has been argued that a framework rooted
in the condensed-matter theory of quantum wells is more
appropriate. In particular, it has been recognized that such
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FIG. 1. Illustration of an electromagnetic resonator in the form
of a plasmonic nanorod situated above an infinite sheet of 2D semi-
conductor material. Light-matter interaction between the resonant
electromagnetic field and excitons in the semiconductor leads to
the formation of a localized collective exciton mode with a center-
of-mass wave function matching the in-plane electric field profile
indicated by the color coding.
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an approach can lead to models in which the electromag-
netic resonator couples to a single effective exciton state
[11,12].

In this paper, we build on similar ideas as put forward in
Ref. [11] and develop a microscopic quantum theory for ex-
citons in 2D materials coupled to electromagnetic resonators
(see Fig. 1). The resonator may be realized using plasmonic
resonances in metal [3—10] or dielectric nanocavities [13—-15],
including a new generation of dielectric cavities with extreme
confinement of light [16-18]. Our analysis shows that by
breaking the translation symmetry, the interaction with the
electromagnetic field of the resonator leads to the formation of
a localized exciton state with a center-of-mass wave function
exactly matching the electromagnetic field profile. We find
that this localized exciton state can be formally described as
an excitonic reaction coordinate—a very successful theoreti-
cal concept developed in the context of open quantum systems
[19-25]. With this formalism, we derive analytical results for
the coupling strength between the exciton and the resonant
electromagnetic field as well as the nonlinear exciton-exciton
interaction. These results show explicitly that the coupling
strength does not scale with the effective mode volume V' or
the number of excitons N.

Rather, the coupling strength is independent of the lateral
field confinement L and depends only on the confinement in
the out-of-plane direction L,. The independence of L arises
from a perfect spatial overlap between the exciton reaction
coordinate and the resonant electromagnetic field within the
plane.

The representation of the excitons in terms of a single re-
action coordinate comes at the price of introducing a residual
environment of exciton states that are coupled to the reaction
coordinate, but not directly to the electromagnetic field. We
show, however, that these residual exciton states influence the
dynamics of the system only at very small lateral confine-
ment length scales, typically below a few nanometers. Within
the same reaction coordinate formalism, one can also conve-
niently account for nonlinear exciton-exciton interactions, and
we find that the lateral field confinement here plays a crucial
role: It determines the effective area of the exciton reaction
coordinate and the nonlinear interaction of excitons within
the reaction coordinate therefore scales as 1/L?, reflecting the
fact that the optical confinement dictates the multiexcitonic
colocalization.

We present three different approaches for calculating the
time evolution of the system and use these methods to as-
sess the influence of the residual exciton environment and
the nonlinear response. In this way, we identify a range of
lateral confinement lengths where L is sufficiently large that
the residual excitons can be ignored but at the same time
small enough that the nonlinear response significantly alters
the dynamics.

The paper is organized as follows. In Sec. II, we describe
the Wannier-Mott exciton states of the 2D materials, the elec-
tromagnetic fields of the resonators, and their interaction. In
Sec. 111, we derive the exciton reaction coordinate formulation
for coupling to a single mode of the electromagnetic resonator.
In Sec. IV, we calculate the time evolution of the system using
three different approaches, which we benchmark against each
other to assess their regimes of validity. In Sec. V, we derive

the effective linear dielectric function of the Wannier-Mott ex-
citons and use this function to make a reference calculation of
the excitation spectrum, which we compare to the microscopic
quantum reaction coordinate approach in the linear-response
limit. Finally, we summarize our findings in Sec. VL.

II. GENERAL FRAMEWORK

In this section, we present the fundamental structure of
the theory, which is based on Wannier-Mott exciton states
and their interactions with a resonant electromagnetic field
described by a single quasinormal mode (QNM). We will
generally study excitons in direct-band-gap semiconduc-
tors with discrete in-plane translational symmetry. In this
sense, monolayer 2D semiconductors such as transition metal
dichalcogenides share many physical features with semicon-
ductor quantum wells, although the excitons of the former
are often more strongly bound due to their reduced dielectric
screening [1]. Monolayer transition-metal dichalcogenides
have direct band gaps at the K and K’ points [26,27] and fea-
ture a rich electronic band structure [cf. Figs. 2(a) and 2(c)]. In
the vicinity of these K and K’ points, however, the conduction
and valence bands can be well approximated by parabolic
bands, leading to an effective-mass approximation, which we
shall use here. The optically bright excitons generated from
these bands are Coulomb-bound electron-hole states. Com-
prehensive theoretical treatments of excitons resolve their
composite fermionic electron-hole structure [28-35]. Here,
we shall employ a simpler description of the excitons in terms
of interacting bosons [36—40].

The resonant electromagnetic fields in optical cavities and
plasmonic particles share many characteristics with the bound
states of electrons. It is a distinct feature of electromagnetic
resonators, however, that the modes are not truly bound, and
this gives rise to discrete peaks with finite widths in scattering
spectra, for example. From a mathematical point of view, it
is advantageous to treat these resonances as modes of the
electromagnetic field with finite lifetimes, and the theory of
QNDMs provides a rigorous framework for doing this [41-44].
In this paper, we will start from a quantum description of the
electromagnetic field in electromagnetic resonators [45] and
extend the theory to describe the interaction with Wannier-
Mott excitons in 2D materials. At positions far from the
resonator, a QNM description of the electromagnetic field is
nontrivial, and this poses a challenge for coupling to excitons
in the nominally infinite sheet of 2D material. Such a descrip-
tion is in principle influenced by retardation effects, but for
the present purpose of describing interactions very close to
the resonator we avoid these complications by treating the
interaction in the quasistatic limit.

A. Exciton states

The description of the excitonic degrees of freedom in the
2D material will be based on a Wannier-Mott framework [47],
which provides a useful analytical description of the excitons
and has proven successful in this context [48,49]. To this
end, we consider the lowest-energy conduction band and the
highest-energy valence band of a 2D semiconductor, sepa-
rated by a band-gap energy E,. We denote by |0) the Fermi
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FIG. 2. (a) Electronic band structure (yellow) for monolayer
WS, (data from GyW, calculations of Ref. [46]). The band energies
are plotted as function of in-plane wave vector and are given relative
to the Fermi energy, Er. Within the effective-mass approximation,
the conduction and valence band energies near the band gap, (K or
K’), are approximated as parabolic (blue and green dashed lines).
(b) Conduction band (blue) and valence band (green) band electronic
energies relative to valence band maximum, Ey,, (left axis) as a
function of the wave vector, k, given relative to K (or K”). Also shown
is the lowest-lying 1s exciton energy (right axis) as a function of
the center-of-mass momentum, k. The band gap, E, and the exciton
gap, Ey = E, — E,, are indicated with vertical arrows. The effective
masses of the valence and conduction bands are independent of the
direction in k-space [46] and the exciton dispersion is thus direction-
independent as well. (c) The Brillouin zone of a 2D hexagonal lattice
with special symmetry points marked as red dots and the path over
which the band structure in panel (a) is calculated (grey line).

sea, i.e., the fermionic state in which the valence band is fully
occupied by electrons and the conduction band is empty. The
fermionic creation operator for a hole in the valence band with
in-plane wave vector k is denoted by v;k and, similarly, clk
denotes the creation operator for an electron in the conduc-
tion band. Here, the index « labels the high-symmetry point
with wave vector K,, when the band gap is degenerate, as is
the case for, e.g., monolayer transition-metal dichalcogenides,
where o € {K, K’} [1]. The single-particle wave functions,
VYe.ak(r) and ¥y, ok (r) are taken to be of Bloch form,

Viak(r) = %e“k*“ﬂ“ui.a(n, M
where i =c,v; N is the number of unit cells in the 2D
sheet with surface area S, and u; o(r) is a Bloch function,
which has the periodicity of the crystal lattice and is normal-
ized over a single unit cell, fVuc d’r|u; o (r)|* = 1. Within the
Wannier-Mott framework, the conduction band and valence
band energies are described through effective masses, m, and
my, respectively, which reflect the local parabolic approxi-

mation to the band structure near the K and K’ valleys, cf.
Fig. 2(a).

The Wannier-Mott exciton states can be written as a mo-
mentum superposition of electron-hole pairs [50],

1Poet) = D D @E, (o ks ompinql®s ()
q

where ¢,(q) is the momentum-space exciton wave function
with shell index n, and M = m, 4+ my, is the total exciton
mass. The label k is thus the center-of-mass momentum of
the exciton. In Ref. [49], it was found that a very good ap-
proximation to the lowest-energy exciton (n = 1) for several
2D transition-metal dichalcogenides is given by the simple

hydrogenic form
J/8mai/s
[1+ (qa)*1¥/*’

in which ag is the exciton Bohr radius and g = |q|. This
form is often found in the context of semiconductor quantum
wells [51,52]. In the present paper, we restrict our discussion
to the lowest-lying exciton and generally use Eq. (3) for the
exciton wave function and denote its quantum state by | P, ),
dropping the index n in Eq. (2). The total exciton energy
is given by the sum of the kinetic energy of the center-of-
mass coordinate, the band gap E,, and the exciton binding
energy, Ey,

¢(q) = 3

n*k?

Ex = Ep + T 4)
where Ep := E; — Ep is the exciton gap, as illustrated in
Fig. 2(b). We will often use the corresponding frequencies as
well, wx = Ex/h, and wg = Ey/h.

Being composed of electron-hole pairs, it is favorable to
describe the excitons through a set of bosonic creation opera-
tors, 511(, which generate single- and multiexcitonic quantum
states. Noting, however, that operators of the form C(Ik =
Zq q&(q)él: (me/M)k-+q f);(mh Mk—q havc? commutation .relgtions
that are neither bosonic nor fermionic [53], a description of
the excitons as noninteracting bosons is infeasible. Neverthe-
less, it is possible to use an approximate description in terms
of interacting bosons [36—40]. In this paper, we include the
leading interaction term, which arises due to exciton-exciton
Coulomb interactions [51,52], such that the total bosonic
form of the exciton Hamiltonian (including the free exciton
energy) is

N PO
I‘]X = E Fla)kbakbak
ak

+ Z hWkk,ql;Zk+quk,7qbak,bak’ (5)
akk’q

where iWyq is the momentum-dependent exciton-exciton
interaction energy and by and Elk are bosonic exciton an-
nihilation and creation operators, obeying the commutation
relation [Bak, 5;,‘]«] = Okk 04’ - These operators can be under-
stood as a bosonic approximation to the excitonic operators
Cox and CJ,, such that 57, |0) is the bosonic representation
of |®.k). The state |0') is the bosonic exciton vacuum state,
which is the bosonic equivalent to the Fermi sea [36]. In

085306-3



EMIL V. DENNING et al. PHYSICAL REVIEW B 105, 085306 (2022)

TABLE I. Relevant material parameters with referenced sources for a selection of monolayer transition metal dichalcogenides. The listed
quantities are effective electron and hole masses, m. and my, respectively, given in units of the free electron mass, my; the band-gap energy, E;;
the exciton binding energy, E,; the exciton Bohr radius, ag; and the velocity parameter, ¥, used for calculation of the Bloch momentum matrix
elements. The band gaps from Ref. [46] have been taken from GyW, band-structure calculations. The exciton Bohr radius has been calculated
using the oscillator strength from the experimentally measured dielectric response of monolayers exfoliated on fused silica substrates in Ref.
[59], as described in Sec. V. For WS,, the oscillator strength is explicitly given in Ref. [59]. For the other materials, we have fitted six
Lorentzian oscillators to the data for the imaginary part of the dielectric function in Ref. [59] to extract the oscillator strength. A similar

calculation based on absorption measurements was made in Ref. [60] for MoS,.

Material my [mo] me [myg)] E, [eV] Ey [eV] ag [nm] ¥ [m/s]

WS, 0.34 [46] 0.33 [46] 2.53 [46] 0.52 [46] 1.95 [59] 6.7 x 10° [27]
MoS, 0.53 [46] 0.43 [46] 2.53 [46] 0.55 [46] 2.0 [59] 1.68 [60] 5.3 x 10° [27]
WSe, 0.36 [46] 0.39 [46] 2.10 [46] 0.48 [46] 3.3[59] 6.0 x 10° [27]
MoSe, 0.58 [46] 0.49 [46] 2.12 [46] 0.50 [46] 2.6 [59] 4.7 x 10° [27]

the present context, the correspondence between excitonic
fermion pairs and bosons is only of formal interest, since the
practical calculations of the microscopic light-matter coupling
strength can be phrased in terms of the fermionic opera-
tors. Similarly, the interaction strengths Wiy are directly
related to four-particle scattering matrix elements evaluated in
the original fermionic space [36,38,51,52]. For convenience,
we can split the exciton Hamiltonian into a nomnteractmg
part, on = .k hwkb bak, and an interacting part, W=

Zakk, Wi blk +qb1k, qbakrb Detailed discussions and
calculatlons of the interaction strengths Wigq can be found
in Refs. [51,52,54,55]. In general, a momentum cutoff of the
order ag Uis reported, which means that /iWq > Wy for
kK, q < ag ' In Ref. [55], variational calculations of the
exciton wave functions and the corresponding Coulomb ma-
trix elements showed that for monolayer WS,, the interaction
strength can be approximated as ZWyyy =~ 2.O7Eba]23 /S. It was
also shown that the interaction has contributions from a direct
part, where the constituent electron and hole within the two
interacting excitons remain fixed, and an exchange part, where
the constituent particles are exchanged. In particular, it was
shown that the exchange part dominates at low momenta,
and that the direct part vanishes identically at zero momen-
tum, meaning that the matrix element Wy, is determined
solely by the exchange contribution. We note, furthermore,
that intervalley exchange Coulomb effects in transition-metal
dichalcogenides [56] are not included in this paper. Besides
from an overall shift, the linear exchange coupling vanishes
for vanishing exciton center-of-mass momentum [56-58],
and is therefore small for optically bright excitons, which
have small center-of-mass momenta. The nonlinear interval-
ley exchange Coulomb interaction is small compared to the
intravalley Coulomb interaction, 7% [34]. Thus, we expect that
the intervalley exchange interaction will give rise to minor
corrections to the overall physics of light-matter coupling and
the weak nonlinear optical response studied here.

A collection of relevant material parameters for a selection
of monolayer transition-metal dichalcogenides is presented in
Table I.

B. Resonant electromagnetic fields

Optical cavities and plasmonic particles support a number
of resonances, which show up as distinct peaks in scattering

spectra, for example, and whose corresponding field distribu-
tions are commonly referred to as QNMs [41-44] or resonant
states [61,62]. They are defined as solutions to the wave
equation subject to suitable radiation conditions, such as the
Silver-Miiller condition for resonators in free space [63,64].
For the present application, we limit the analysis to cases in
which there is only a single QNM in the frequency range of in-
terest, and we denote the associated electric-field distribution
by f.(r); the corresponding eigenfrequency @, = w, — iy, is
complex with a negative imaginary part, where y, accounts
for the cavity decay rate. For positions close to or inside
the resonator, the operator describing the quantized electric
field can be expanded in terms of this QNM by the method
presented in Ref. [45]. In this paper, we shall be interested in
coupling to sheets of 2D materials, which extend to regions far
away from the resonator, and where the formulation of Ref.
[45] is not directly applicable. As discussed in Appendix A,
however, it is possible to extend the general framework of Ref.
[45] by use of the Lippmann-Schwinger equation and ideas
originally put forward in Ref. [65] to write the electric-field
operator at general positions r outside the resonator in terms
of a convolution as

. hoe [© -
B, y=1i| ‘”/ dil.(r,t — T)a(t) + He.  (6)
2¢0 Jo

Here, the creation and annihilation operators &/ and . obey
the commutation relation [a.(t), Ezz(t)] =1 [45], and the
memory kernel F.(r, t), which ensures a proper causal rela-
tion to locations far from the resonator, derives from analytical
continuation of the electric field QNM onto the real frequency
axis. In the present paper, we shall focus on the local and non-
retarded couphng dynamics by setting F.(r,1) =F.(r)s(t)
and calculating F.(r) from f.(r) by use of the quasistatic
Green’s tensor, see Appendix A for details. Moreover, as we
shall see below, the coupling will be phrased in terms of
the electromagnetic vector potential, which we write in the
single-QNM case as

" h - .
A@r) = | e [acFc(r) + aF(r)]. )

Due to radiative loss and possibly absorption in the res-
onator material, the energy of the electromagnetic field in
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the resonator is not conserved. Therefore, it is convenient to
describe the state of the field through its density operator, 2,
which in the absence of interactions is governed by the master
equation [45],
dpe
dt

= —ilocdlac, pel + 2y D(@c, pe), ®)
where
D@, p) = 2p%" — 3(3"2p + p3') ©)

is the Lindblad dissipator.

C. Light-matter interaction

We now proceed to consider interactions between the exci-
tons and the resonant electromagnetic field. The exciton-field
coupling is generated by the minimal-coupling Hamiltonian,
of which the dominating part (written in first quantization)
is [66]

A €o A R
Bi=-- 2_Am)-pi (10)
1
where the sum runs over the electrons in the system.

The light-matter interaction Hamiltonian can be cast into
the second-quantized form [67]

Ay =1 (b (8andtc + goetl) + bak (e + gD, (1)
ak

where the interaction strengths are evaluated in the fermionic
space as

(Pekl Y Fe(r)-pil0),  (12)

and fig, is obtained by replacing F.(r) with F#(r). Assum-
ing that the light-matter coupling is weak compared to the
relevant electromagnetic frequencies and exciton frequencies,
we make the rotating-wave approximation, corresponding to
setting g/, = 0 in Eq. (11). With these approximations, the
light-matter interaction is

HI = Z(hgak&cl;j;k + thk&IEak)~
ak

13)

Using the Slater-Condon rules [47], the matrix element
entering g,k can be evaluated, again in the fermionic space,
as

(Pak| D Fe(r;) - pil0)

- zle"’(q) / dre”™ Tk (0P - Fe(ruy o (1), (14)
q

where we used the expression for the single-particle wave
functions of Eq. (1). The summation over q only involves the
wave function ¢(q) and can thus be evaluated independently

as
S 2 ] 2s
Eq ¢(q) = I /d q9(q) = ‘,_naf;' s5)

Assuming that the mode function does not vary appreciably
over the unit cell, and that the relevant wave vectors are much
smaller than the inverse lattice constant, we can approximate
the integral in Eq. (14) as a sum over unit cells (indexed by j)
and a Bloch matrix element

/ Pre® TP - B (0ity o (1)

=Y e F(r}, 20) - P, (16)
J

where pg, = fVuc d3ruj,a(r)f)uvya(r), r; is the lateral coordi-
nate of the jth unit cell, and we have taken the 2D sheet to
be located at z = zy. For 2D materials in the transition-metal
dichalcogenide family, the two degenerate exciton modes at
the K and K’ valleys have the matrix elements [27,68], pX =
mo¥V (X + iy), pg =my¥ (x — iy), where ¥ is a material-
dependent velocity parameter (see Table I for values). These
matrix elements are circularly polarized due to spin-orbit cou-
pling. The summation over j in Eq. (16) can then be rewritten
as an integral as g %’ f d’r. Combining everything, the
coupling strength becomes

h _—
Rguk = — - | e / dre * E (r. 20) - p,. (17)
my\| TeoweagS

where the integral is over the infinite extent of the 2D material.
Whereas the QNMs diverge (exponentially) at sufficiently
large distances from the resonator [44], the function F.(r) be-
haves as the free-space quasistatic Green tensor at sufficiently
large distances and is therefore square integrable.

We note that in addition to the contributions to the
light-matter interactions derived until this point, a nonlinear
saturation term of the form

Wen = D h0ukiok (Bl Doy bak, + Hee)(@] + ac) (18)
ak1k2k3

appears due to the nonbosonic nature of the excitons [51,52].
Within the hydrogenic Wannier-Mott exciton approximation,
the nonlinear interaction due to saturation can be approxi-
mated in the zero-momentum limit, where it takes its maximal
value, as hoyg00 > (41 /7)(a123 /8)2Gy, where Gy is the cou-
pling strength [51]. For a coupling strength of 50 meV and an
exciton binding energy of 500 meV, this gives a ratio relative
to the exciton-exciton Coulomb interaction of o000/ Wooo ==
0.17. Thus, for the systems of interest in this paper, the
Coulomb exciton-exciton interaction W is considered to be
the strongest nonlinear effect, and the saturation interaction is
neglected. We do note, however, that such saturation effects
have been shown to play an important role for the nonlinear
dynamics of trions in transition-metal dichalcogenides, owing
to the three-fermion composite structure of trions [69,70].

III. EXCITON REACTION COORDINATE

In Sec. II, we have seen that the excitons are described by
a Hamiltonian ﬁx, which conserves the center-of-mass mo-
mentum K, thus reflecting the discrete translation symmetry
of the 2D material sheet. This symmetry is then explicitly
broken through the interaction Hamiltonian Hj, because the
electric-field distribution F. is not translationally invariant.
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In this section, we introduce a basis transformation of the
excitons that provides a natural starting point for analyzing
this system. The transformation defines a localized exciton
mode, which we denote the exciton reaction coordinate in
the spirit of quantum chemistry, where the concept of reac-
tion coordinates has been developed in a similar fashion to
describe nuclear motion in molecules [19-24]. In the new
basis, the light-matter interaction is greatly simplified, be-
cause the electromagnetic field couples only to the exciton
reaction coordinate. The transformation comes at the cost of
introducing a reservoir of residual exciton modes, which in
turn are coupled to the reaction coordinate. However, as we
shall see in Sec. IV, there are several successful approximate
strategies for treating these residual modes.

A. Exciton reaction coordinate and residual
excitonic spectral density

We now define a new basis of exciton modes, {B,-}, gener-
ated by a unitary transformation U as [25]

Bi =" Ukbox. (19)
ak

in which the first row in the transformation matrix U is given
by Unek = gl (D ax 18ak|*) /2, such that

~ —-1/2 ~
Bo=[ Y leal] Y b (20)
ak ak

We denote this collective mode as the exciton reaction co-
ordinate. The remaining rows in U are constructed via
Gram-Schmidt orthogonalisation as orthonormal vectors,
such that U is unitary, i.e.,

> Uiy Uiak = 5. (21)
ak

The light-matter interaction can now be written in the much
simpler form

Hy = hGo(Bod" + B}, (22)

where Go = /D, |8ax|>. This illustrates the advantage of
introducing the reaction coordinate: by construction, the

resonant electromagnetic field now only interacts with the
weighted sum of Wannier-Mott excitons defined by By. The
transformation U thus precisely captures the notion of a lo-
calized excitonic state, which is defined by the interaction
with the electromagnetic field. This physically appealing re-
formulation of the dynamics comes at the computational price
that the associated free-exciton Hamiltonian H, g is no longer
diagonal,

Hyo = Z hQii'éjﬁiu (23)

where Qv =) ExUik U, and thus Q; = Q.. In this
way, the exciton reaction coordinate is coupled to a residual
environment of other exciton modes, f?,-, i > 0. As we shall
see later, it is useful to have access to the spectral density
of this environment, and this requires a rediagonalization as
follows. The procedure starts by separating out the terms in

ﬁx,o that contain the reaction coordinate By,

Hyo = hQ00BiBy + 1 Z(Qmégéi + QioBBy)

i>0

+ Z hQi,'/BjB,‘f. (24)

ii’>0
This can be written in the compact matrix form
Hyo = hQ0BiBy + B AABy + Boid "B + BTh2'B,  (25)

where Q' is constructed from Q by removing the first row
and column, and B and A are vectors with elements B; and
Ai = Qjo, respectively, with i > 0. We now wish to rediago-
nalize the part of the Hamiltonian governing the modes with
i > 0. To do this, we define U as the transformation that
diagonalizes €', such that  := U'Q'U is diagonal. We also
define a transformed set of modes, B = UB. Since Q' is a
Hermitian matrix, U is unitary, and the columns of U are the
eigenvectors of . In this way, the last term in Eq. (25) can be
written in a diagonal form, and the free-exciton Hamiltonian
can be written as

ﬁx,() = FZQ()BSB(] —+ Z FlQlﬁjél —+ leléoéj =+ hi;kg(;é,,
i>0

(26)

where A = UTA and we have defined Q) := Qqo, €; := Q.
From Eq. (26), it is evident that the exciton states of the
residual environment are mutually uncoupled and couple only
to the exciton reaction coordinate. The spectral density of the
residual environment can be calculated from Eq. (26) as

Jes(@) =Y A8 — Q). 27)

i>0

This is in short called the residual spectral density of the
exciton reaction coordinate. Although the procedure of con-
structing the reaction coordinate transformation matrix U and
subsequently the rediagonalization matrix U can be carried
out numerically, this scales poorly with the number of ele-
ments in the matrix. Fortunately, the procedure of extracting
reaction coordinates and residual spectral densities has been
extensively studied in the literature of open quantum systems
[24,25,71-73], and there are direct ways of obtaining the
residual spectral density without going through the interme-
diate steps as above.

The starting point for such analyses is the exciton spectral
density of the full set of exciton states,

J(@) =) |gakl*8(@ — wx), (28)
ak

from which we can derive the necessary quantities related
to the exciton reaction coordinate. Starting with the reaction
coordinate frequency, we have

[ dowJ(w)

[doJ(®) 29

*
Qo = E UporxUoek =
ak
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which is simply the first moment of J(w). The coupling
strength can be calculated similarly:

Go= [ lgakl? = ,//dwf(w).
ak

The residual spectral density is more involved. Here we shall
not prove the relation between J and Jis, but state a result
from Ref. [71],

(30)

_ GiJ(w)
Ts@) = G ) @31
where
I b
Plw) = 5(&&[1 dUJ(U)[w —v—il + w—v+ i€i| ©2)

is the so-called reducer and the interval [a, b] is the frequency
support of J(w) [71]; in the present case, the support of the
spectral density is [wp, 00). When calculating the reducer
numerically, it is convenient to use the form [71]

—a bIWw) = J(w)
|- [ i@t

- a V—w

where the upper limit of the support, b, is chosen sufficiently
large that Js can be considered independent thereof. To
deepen the intuitive understanding of the reaction coordinate
transformation for our 2D excitonic systems, and for practical
reasons, we can rewrite the creation operator of the exciton

reaction coordinate by introducing the real-space exciton op-
erators bl (r) = S712 Y, e”k'rblk, such that

Bi=Y" / d* ey (r)b] (r),

where ¥ (r) is the real-space exciton reaction coordinate
wave function:

®(w) = J(@)In [‘l’: 33)

(34)

Fc(r’ ZO) : pgv
VX [ R z0) - p 2

From the form of v (r), it is clear that the exciton reaction
coordinate inherits its spatial distribution from the vectorial
projection of the electromagnetic field distribution F..(r) onto
the plane of the 2D material.

It is useful to establish the connection between the coupling
strength Gy, and the electromagnetic field distribution given
by F.(r). This can be obtained by using the general exciton-
field coupling coefficient, Eq. (17), along with the expression
for Gy, Eq. (30), which leads directly to

— 2
o= \/ﬂ'eom()a)ga]g Z/d r|FC(r @) pCV| . (36)

Importantly, the coupling strength is independent of the lateral
confinement length of the optical mode. This can already be
seen in Eq. (36), where the integral over the mode extends
over the entire 2D surface. The independence of Gy on the
lateral confinement stems from the fact that the exciton reac-
tion coordinate wave function, Eq. (35), is perfectly matched
with the optical mode within the 2D plane. In Sec. IIIC, we
show this analytically for the case of a mode profile that is

e = — (35)

separable in the in-plane and out-of-plane coordinates and see
that the coupling strength only depends on the out-of-plane
confinement length. In Appendix D, we have also performed
numerical calculations with a QNM of a gold nanorod res-
onator as in Fig. 1, where the resonator length is varied. The
calculations show that the contribution to Gy from the integral
over the normalized QNM profile in Eq. (36) varies only about
1% when the length of the nanorod—and hence the lateral
confinement length of the QNM—is varied between 80 nm
and 95 nm.

B. Exciton-exciton interactions within the reaction coordinate

The exciton-exciton interaction, W, can be rewritten in the
transformed basis of exciton modes {B;} as

W= Zzhwkk’ iak+qUjok' qU* K ;akBTBHé B
akKk'qii’ jj’

(37

In the dynamical model derived below, we account only for
the exciton-exciton interactions within the exciton reaction
coordinate. This is justified by the assumption that this is the
only region of the exciton Hilbert space where the exciton
density is sufficiently large to give a significant contribution
to the dynamics. Thus, keeping only the term i, i, j, j' = O in
the summation, we end up with the interaction term

Wo = W, B} B} BoBy, (38)
with the effective nonlinear interaction strength
= Z Wi qUoak+qUoek' —qUggie Ui - 39

akk'q

When the characteristic confinement length of the electromag-
netic field is large compared with the exciton Bohr radius,
the transformation elements Uy decay on a momentum scale
that is small compared to the momentum variation of Wk/q.
In this regime, we can approximate Wigrq 2 Wooo. Further-
more, using the spatial reaction coordinate wave function,
Yo, the effective nonlinear interaction strength can be vastly
simplified as

Wy =SWOOOZ/d2r|¢g(r)|4.

This result is consistent with Ref. [12], where it is assumed
that there exists an excitonic eigenmode with the same spa-
tial wave function as the resonator mode. As we shall see
explicitly later, the integral of |y (r)|* is a measure of only
the lateral confinement of the optical mode. Thus, the lateral
optical confinement is inherited by the exciton reaction coor-
dinate, thereby determining the interaction strength between
excitons within the reaction coordinate.

(40)

C. Localized and separable mode profiles

In this subsection, we investigate the coupling dynamics in
an idealized limit of an electromagnetic mode function that is
localized and separable. We do this to illustrate the mechanism
by which the perfect colocalization of the exciton reaction
coordinate and the resonant field leads to a coupling strength
that is independent of the lateral extent of the electromagnetic
field.
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The electromagnetic field distribution F.(r) is localized in
space, as discussed in Sec. II B. It is advantageous, therefore,
to think of F.(r) as a hypothetical localized solution to the
wave equation with a purely real frequency. Even if all reso-
nant electromagnetic modes of optical cavities and plasmonic
particles have finite Q values and are leaky in nature, the
abstraction of perfect temporal and spatial confinement allows
us to derive a number of interesting analytical results regard-
ing the effect of the electromagnetic field distribution on the
coupling strength. At positions close to the resonator, F.(r)
closely resembles the QNM f.(r) since they are related by
the analytical continuation @, — w,. Therefore, we expect the
general findings to apply qualitatively also to electromagnetic
resonators with finite Q values.

With this motivation, we consider now a localized mode
function F, (r) in an environment of constant and real permit-
tivity €, and we assume that the field is separable in the lateral
and perpendicular coordinates, such that

F(x,y,2) = nF(2)F (x, ), (41)

where n is the unit polarization vector of the mode. Since F(r)
is localized in space, it obeys the normalization requirement

€ef f dz|E(2) / d’r|Fy(m))* =1, (42)

in which €. is an effective dielectric constant to account
for the dielectric response of the surrounding material. While
€(r) can be considered constant within the 2D semiconductor
sheet, it generally varies across the surrounding structure. To
focus on the influence of confinement length scales, however,
we approximate the combined effect by use of an effective
dielectric constant €.. We note that this assumption is not
generally a requirement for using the theory, and for the
numerically calculated QNM that we describe in Sec. V and
Appendix D, we do not make any such simplifying assump-
tions about the dielectric environment.

Using the separable mode function in Eq. (41) and the
normalization requirement in Eq. (42), we can demonstrate
that G is entirely independent of the lateral mode distribution
by rewriting it as

"Gy = Z h€%|n-pg\,|2

, 43
— megmyweagLy “43)
where
ot [ dz|F.(2)?
LZ:€Hf 2| F.(2)] 44)

|F(20)

is the out-of-plane confinement length. It follows from
Eq. (43) that the coupling strength is independent of the lateral
mode distribution and that it scales with the out-of-plane con-
finement length as Go oc L, 172, For ease of notation, we shall
use an implicit summation over the valley index as |n - pey| =
(3", Im - p%|*)"/? when stating the polarization overlap used
in specific calculations.

The reaction coordinate exciton-exciton interaction
strength W can be written using Eq. (40) as
d%r|Fy(r)*
AW, = hSWooonn J drIF )] (45)

(] d2r|Fy(r)2)

where

Za n - pgvl4
(Za |n ' pgv|2)2

is a polarization-dependent prefactor. This prefactor takes val-
ues between 1/2 and 1. The maximal value, 1, is obtained
when n is orthogonal to one of the momentum matrix ele-
ments, i.e., n - p%, = 0. Conversely, the minimal value, 1/2, is
obtained when |n - pZ, | is equal for the two polarizations.

In = (46)

1. Gaussian lateral field distribution

We now proceed by assuming that the lateral field distribu-
tion defined by the electromagnetic resonator is Gaussian with
a confinement length scale L:

e—(xz-ky2 )/(2L*)
/7

We note that f dzr|17"||~(r)|2 =1, so the normalization re-
quirement is € | dz|F.(2)|> = 1, and the exciton coupling
strengths in Eq. (17) can be written as

[4eZ|n - po |2L2 . L2
0 cv — 5 (kL)
- | — F Z0)e” 2 . 48
8ak hE() (2) calzgs Z( 0 ( )

This relatively simple expression for the coupling strength
allows us to evaluate the expression for the spectral density
in Eq. (28) by writing the summation over k as an integral,
Sk — % [ d*k. In this way, we find that we can write the
spectral density compactly in terms of the reaction coordinate
coupling strength in Eq. (43) as

Fi(x,y) = (47)

J(@) = (G3/£)O(w — wp)e™ =, (49)

where & = /i/(2ML?) is a cutoff frequency and @ is the Heav-
iside function. Using this analytical expression for the spectral
density, it is also possible to evaluate the residual spectral
density in Eq. (31) analytically,

EO(w — wy)e' @™ ®0)/E

Jres(@) = Elz[(w —wo)/§] + w2

(50)

where Ei(x) = [*_ dzexp(z)/z is the exponential integral
function.

Figure 3 shows an example of the spectral density and
residual spectral density generated by the Gaussian field dis-
tribution in Eq. (47) coupled to WS, and MoS,, respectively.
As can be seen from Eq. (49), the magnitude of the spectral
density scales as the ratio G%/E . Here, Gy depends on the
material-specific parameters p&, and ag along with the out-
of-plane confinement length scale L,. The cutoff frequency
& depends on the material-specific total exciton mass M as
well as the in-plane confinement length scale of the resonator,
L. The magnitude of the residual spectral density, on the
other hand, scales as the cutoff frequency &. Thus, the cutoff
frequency determines not only the relevant frequency scale of
the exciton spectral density but also the relative strength of the
interactions with the residual exciton environment.
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FIG. 3. Excitonic spectral density (solid lines) and correspond-
ing residual spectral densities (dotted lines, both scaled up by a
factor of 10*) for a Gaussian lateral field distribution with L =
20 nm, L, =200 nm and |p.y - n|/pey = 0.3, coupled to monolayer
WS, (dark blue) and MoS, (light blue), respectively. The inset shows
the Gaussian lateral field distribution FH (x,y).

The reaction coordinate exciton-exciton interaction
strength W can be obtained from Eq. (45) as
N
W, = ——— 51
0 2mL? D

As anticipated in Sec. I, this nonlinear interaction strength
scales inversely with the confinement area, L2, reflecting that
the colocalization of multiple excitons (and thereby their in-
teraction) is fully determined by the electromagnetic field
distribution. For the calculations in this paper that involve
nonlinear interactions with Gaussian electromagnetic modes
(Sec. IV C 3), we take the polarization prefactor to be unity,
corresponding to a circularly polarized optical mode.

IV. TIME EVOLUTION

Based on the general framework in Sec. II and the refor-
mulation in terms of the reaction coordinate in Sec. III, we are
now in a position to calculate the time evolution of the exci-
tations in the coupled system comprising the electromagnetic
resonator and the 2D material.

In this section, we present three strategies of increasing
complexity for calculating the system dynamics. The first
method, which is exact when excitonic broadening effects
are ignored, is based on direct time evolution of the single-
excitation product states formed by the Fock states of a
single electromagnetic excitation and the continuum of single-
exciton states with given momentum. The second method is
based on a Markovian treatment of the residual exciton modes,
and a master equation for the reduced density operator of
the resonant electromagnetic field and the exciton reaction
coordinate is derived. In this formulation, one can account
for excitonic decay and dephasing within the reaction coor-
dinate, and external driving of the system can be included as
well. The Markovian master equation is benchmarked against
the exact treatment when excitonic broadening effects and
external driving are ignored, thereby providing a reference
calculation to assess the Markov approximation for the in-

teraction with the residual exciton modes. The third method
is based on an iterative extension of the reaction coordinate
mapping, allowing one to represent the residual exciton modes
by a 1D chain of bosonic modes. This, in turn, enables the
model to account for non-Markovian features of the residual
environment, although our implementation can only evolve
the system up to a finite time. Furthermore, using this ap-
proach, it is also straightforward to include external driving
with a time-dependent amplitude, as is the case when the
system is excited by a laser pulse.

A. Exact evolution in the single-excitation sector

As a relatively simple starting point, and to establish a
benchmark for evaluating the precision of more complicated
approaches for time-evolution calculations, we consider in
this section the Fock state representation of a simplified model
system. This approach is motivated by the fact that the dynam-
ics can be solved exactly when the coupled system is restricted
to the one-excitation sector. In practice, we do this by initializ-
ing the resonant electromagnetic field in a single-photon Fock
state such that nonlinearities can be neglected. We can then
expand the combined state as

W()) = ¢ (0)|1:{0}) + Z¢ak(t)|0; la),  (52)
ak

where |1; {0}) denotes the state with a single electromagnetic
excitation and zero excitons and |0; 1,x) denotes the state with
no electromagnetic excitations combined with a single exciton
with momentum k. The amplitude ¢, then obeys the equation
of motion [74]

dgc(t)
dr

/ AR —1)e) = vedet),  (53)
0

where

K(t)=0(1) / dwd (w)e @70, (54)
Compared to Ref. [74], the roles of the electromagnetic and
electronic degrees of freedom are interchanged, so the exci-
tons act as a continuum with which the single electromagnetic
field of the resonator interacts. Since J(w) does not suffer
from an ultraviolet divergence, there is no need to introduce
a cutoff to evaluate the integral. Although this method is in
principle exact, it is limited to single-excitation problems and
cannot be used to model problems with external driving or de-
phasing effects. For this reason, we use the method mostly for
reference calculations for the master equation formulations to
be described below.

B. Secular Markovian master equation

In this section, we derive a secular Markovian master
equation for the reduced density operator p of the system
comprising the resonant electromagnetic field and the exciton
reaction coordinate, where the residual exciton modes are
traced out. We subsequently benchmark this master equation
approach against the exact method from Sec. IV A. We do this
in the limit where dephasing and driving effects are turned
off to assess the accuracy of the master equation and study
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the conditions for describing the interactions with the residual
exciton modes within the Markov approximation.

In the Hamiltonian governing the evolution of the resonant
electromagnetic field, we include external laser driving with
frequency wq and constant amplitude F in addition to the
free evolution described in Sec. I B, such that the part of the
Hamiltonian governing the field evolution is H, = hwcaz a. +
hF(eiwdt'\ —lu)dl‘" i )

Next, we divide the total Hamiltonian into contributions
describing the exciton reaction coordinate and the resonant
mode (denoted by the system, S) the residual exciton modes
(denoted by the reservoir, R), and their mutual coupling (SR),
as H = Hs + Hy + Hsg. Putting it all together, we have

Hs = h(w. — wq)ala. + (o — wa)BBo + Wo
+ hGo(Bja. + Boa)) + hF (ac + &),

Ay =Y 1 — w0)B}B;, (55)
i>0
Hsg = Y hkiBoB] + i;BYB;,
i>0

in which we have expressed the Hamiltonian in a reference
frame rotating with the driving frequency wqy. The standard
Markovian master equation obtained by tracing out the envi-
ronment is given by [75]

dp

= = —_[Hs,

dr h[ >
in which the Lindblad dissipator D(X, p) is specified in
Eq. (9), and

Pl +2y.D(ac, p) + KI[p], (56)

o0

Kol = - | arralise (Ao p o 1) 57
where Hgp(—7) = e {BsHHRT/R o o+l +HOT/R g the
interaction-picture time evolution of Hsg, and f)g is the initial
state of the residual excitonic environment, which we take to
be the exciton vacuum. As discussed in Appendix B, we can
use the secular approximation to write the exciton dissipator
K[p] in a simpler form as

KIp] = =) {Tres(@)DIBo(@), p]

— iAres(@)[(Bo(@)) Bo(@), p1}, (58)

where the sum is over all system eigenfrequency differences
w, and the exciton dissipation rate ['.s(w) can be written in
terms of the residual spectral density as

[res () = 27 Jyes (@ + wq). (59)

The operator By(w) is an eigenstate-projected excitation op-
erator, which is described in detail in Appendix B, where
the term As(w) is also defined. In the weak-driving limit,
F < Gy, y., only the low-energy states of the system are pop-
ulated and Gy dominates the structure of the coupled system.
In this limit, we can calculate the eigenstates of ﬂs in the basis
{10, 0}, |1, 0}, |0, 1)}, where |n., ny) denotes a Fock state with
n. electromagnetic energy quanta in the resonant field mode
and n, excitons in the reaction coordinate mode. We find that
there are only two nonzero contributions to the summation

0.30

|FIQO

: P hwy
0.25 .

0.20
0.15 +
0.10
0.05

Res. spec. dens., Jres(w)/&

0.00

hw — hwp [HE]

FIG. 4. Residual spectral density (green shaded area) for a Gaus-
sian optical mode shown along with the exciton reaction coordinate
frequency, €2y, and the polariton frequencies, wy (orange dotted
lines), for the resonant case, w. = 2y and for Gy = 2&. The in-
dicated frequencies are shown relative to the exciton gap wy. In
the Markovian master equation, the dissipation rates from the po-
laritons into the residual exciton environment are proportional to
Jres(@1 ). Thereby, a large coupling strength, Gy, relative to the cutoff
frequency, &, leads to a weaker interaction with the residual environ-
ment, as the polariton peaks are displaced further away from the peak
of Jres.

over w, corresponding to the upper and lower polariton modes,
with frequencies

@1 = Hwe + Qo — 204 + 1),
o = %(wc + Qo — 2wq — 1). (60)

The corresponding eigenstate-projected operators are the an-
nihilation operators of the upper and lower polaritons,

2Go(—8cx + 1) (—8ex +1)? P

Bo(@y) = ,
Gy M Ty s
B /= 260(80)( + 77) (6cx + 77)2 A
BO(CU—) = - 2 2a° 2 B 0,
4Gj + (bex + 1) 4Gy + (bex + 1)

(61)

where §.x = w. — $2¢ is the exciton-resonator detuning and
n =/4G3 + 82, is the polariton splitting. The bars over @
signify that the polariton frequencies are given in the rotat-
ing frame. They are related to the corresponding laboratory
frame frequencies wy as w1 = @4+ + wq. In the case where
the lower-polariton energy w_ is below the exciton gap wy [at
resonance, this amounts to Gy > (£2¢ — wy)], the contribution
to the dissipator from Bo(@_) vanishes, and we can write the
master equation in the simplified form

dlb l Y ~ A A — N A

T _E[HS’ P11+ 2y Db, p) + Tres(@1)D(By, p), (62)
where 1% = E()(cb+).

These derivations put us in a position to understand
the impact of the different energy scales in the system on
a deeper level. In Fig. 4, the residual spectral density is
shown along with an indication of the reaction coordinate
frequency €2p. The upper and lower polariton frequencies
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w4 are also indicated for the resonant case w. = €2y, where
wy = Qy £ Gy. From Eq. (59), we know that the dissipation
rates from the polaritons into the residual environment are
given by 2mJis(w+). Thus, when the coupling strength is
increased far beyond the cutoff frequency &, the polaritonic
peaks are pushed away from the peak of J.s(w), and the
effective interaction strength with the residual excitons is con-
sequently reduced. Correspondingly, if the cutoff frequency is
decreased, for example, by increasing the lateral confinement
length L, the same reduction in effective interaction strength
is observed. In the following section, we shall see that this
phenomenon of effectively decoupling the residual excitons
when Gy > £ leads to a large parameter regime where the
residual environment can be safely ignored.

1. Benchmarking

In Fig. 5(a), we show the temporal evolution of the
resonator population for three different lateral confinement
length scales. The initial state is a single excitation in the
resonator. We compare the time evolution calculated by the
exact equation of motion of the resonant electromagnetic field
in Eq. (53) (black solid lines) with the secular Markovian
master equation with all terms included in Eq. (58) (green
dots), as well as the simplified Markovian master equation
in Eq. (62) (dashed orange lines). For reference, we have
also shown the time evolution generated when the residual
excitons are entirely ignored (red dotted lines). In general,
the dynamics show Rabi oscillations due to the interaction
between the exciton reaction coordinate and the resonator
field. These oscillations are damped due to Markovian losses
of the resonator and interactions with the residual excitons. As
discussed earlier, the effect of the residual excitons becomes
more pronounced as the lateral size decreases. In Fig. 5(b), the
relative errors of the three approximate approaches are shown.
The errors are calculated as

< _ [ditl(@ln)ac@)) — g1
rel —
[dtlg.)]*

where (&Z(t)&c(t)) is the population of the electromagnetic
resonator obtained with one of the master equations and ¢.(z)
is obtained from the exact time evolution. Furthermore, the
Markovian decay rate into the residual exciton modes [y is
shown (blue solid line, right y axis). The dependence of the
errors on the lateral length scales confirms that the influence
of the residual excitons is more pronounced at small length
scales. For the chosen parameters, we find that the residual
excitons can be ignored when L 2 4 nm. Furthermore, we
see that the Markovian master equation provides a useful
description of the interactions with the residual environment,
which improves the accuracy of the calculated time evolution.
We also conclude that the error of the simplified Markovian
master equation, Eq. (62), is comparable with the full Marko-
vian dissipator, Eq. (58), with all secular terms included. In
a significant portion of the parameter regime, the simplified
master equation even performs slightly better.

; (63)

2. Inclusion of excitonic broadening effects

Because of interactions with lattice phonons, the excitons
experience population decay and dephasing, which result in a

— exact
® Full Markovian

Simplified Markovian
Residual exc. ignored

(a)
1.0 -" L=10.0 nm
c \
2 0548
2 \
35
Q
g 00 - h&’f\o‘m&cmmu—mxo-
g 107 L=3.6nm
C
o
(%]
(V]
o

>0 0

L=2.0nm

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time [ps]

Relative error, &

Residual decay, hles [MmeV]

2 3 4 5 6 7 8 9 10
Lateral confinement length, L [nm]

FIG. 5. (a) Exact transient dynamics of Gaussian resonator mode
coupled resonantly to WS, (black solid lines) compared to the solu-
tion of the simplified Markovian master equation, Eq. (62) (orange
dashed lines) and the Markovian master equation with all secular
terms included, Eq. (58) (green dots). For reference, the solution
of the master equation without taking the residual exciton envi-
ronment into account is also shown (dotted red lines). Parameters:
L, =200 nm, 2Aiy, = 6.6 meV, |p - n|/pey = 0.2, corresponding
to iGy = 7.7 meV. (b) The relative error (left axis) of the three
approximate approaches as a function of lateral confinement length,
L, with line styles matching those in panel (a). The blue solid line
(right axis) shows the Markovian decay rate from the upper polariton
into the residual environment.

temperature-dependent broadening of the exciton line [76,77].
In Ref. [76], it was found that the dominant mechanisms gen-
erating excitonic decay are radiative recombination (which is
temperature independent) and scattering with phonons at the
A point. In addition, an important contribution to the exciton
linewidth was found from intravalley scattering with phonons
at the I point. Specifically, the total exciton linewidth of vari-
ous monolayer transition-metal dichalcogenides was found to
be well described by the temperature-dependent expression
I'x =y +caT +c/lexp{/kgT} — 1], where c¢;, ¢, and Q
are material-dependent coefficients. For WS, and WSe,, the
temperature-independent term ) contains contributions from
radiative decay and spontaneous emission of A phonons. The

085306-11



EMIL V. DENNING et al.

PHYSICAL REVIEW B 105, 085306 (2022)

TABLE II. Parameters from Ref. [76] for calculation of
temperature-dependent exciton decay and dephasing rates. The
parameters are the temperature-independent contribution to the non-
radiative decay from phonon interactions, y;", the contribution to
dephasing from intravalley phonon scattering, c;, the contribu-
tion to decay (and for MoS, also dephasing) due to intervalley
phonon scattering, c,, and the typical phonon energy for intervalley
processes, 2.

Material ~ y3" [meV] ¢ [ueV/K] c; [meV] Q [meV]
WSe, 3.6 56 9.4 15
WS, 2.1 28 6.5 20
MoS, 0 91 8.4 (decay), 30

7.2 (dephasing)

linear coefficient, c;, stems from intravalley scattering with
thermally excited phonons at the I' point and the last term
accounts for interactions with thermally excited phonons at
the A point. The first and last terms describe processes that
lead to a decay of excitons. Whereas radiative decay is ac-
counted for through the interaction with the electromagnetic
field, H;, we include the possibility of scattering into dark
exciton states as a decay term in the master equation of the
form 2y, D(Bo, p), where y, = 1" + c2/[lexp{Q/ks T} — 1]
and y," is the nonradiative contribution to yy. Intravalley
scattering with I phonons, on the other hand, does not lead
to a population decay but rather to a dephasing, similar to
virtual phonon transitions to higher-lying excited states seen
in systems with localized exciton states [78—80]. This process
can be included in the master equation by a dephasing term,
2)/;2)(1?3@0, p), where y;, = ¢, T. Thus, although the total ex-
citon linewidth, I'x = yx + y;, depends only on the sum of
the two contributions, it is important to note that there is a
difference in nature between population decay and dephasing
processes. In Ref. [76], monolayer MoS, was also studied,
and it was found that the coefficient ¢, contains contributions
both from intravalley scattering, i.e., dephasing, and from in-
teractions with A phonons, i.e., decay into dark exciton states.
The parameters from Ref. [76] are presented in Table II.

We note that recent studies indicate strain as a possible
way of energetically shifting the direct K-valley exciton below
the indirect, momentum-dark K — A exciton in monolayer
WSe, [81]. Such an energetic crossover would arguably lead
to significant reduction of phonon-induced decay of the bright
exciton, even with a vanishing decay at zero temperature,
as is the case for Mo-based transition-metal dichalcogenides,
where the K — A exciton is below the direct K exciton in the
absence of strain.

C. Non-Markovian treatment of residual excitons
using chain mapping

In some situations, e.g., for small lateral confinement
scales, it may be necessary to account for non-Markovian
effects in the interaction with the residual excitonic envi-
ronment. This can be done by extracting additional reaction
coordinates from the residual environment, thereby extend-
ing the system Hilbert space to include the most important
environmental degrees of freedom. Since the exciton reaction

@ 5
Q¢ 0 N
O— o {B")
(b) . 5 5
(078 Bo Bl
c G 2
o—@—= o (B}
c R N N
() a, GO BO Ie. Bn N
O—.— ” {BE")}
FIG. 6. Illustration of the chain mapping technique.

(a) Schematic of the single-mode reaction coordinate mapping,
which generates a single reaction coordinate (By) coupled to a
residual exciton environment with mode operators §EO) . (b) When
the reaction coordinate mapping is repeated, a new reaction
coordinate, B, is extracted from the residual environment. This
reaction coordinate is then coupled to a new residual environment
with operators ﬁfl). (c) After n repetitions of the mapping, the
excitons are represented as a chain with n + 1 bosonic modes and a
residual excitonic environment.

coordinate Hamiltonian in Eq. (26) is structurally equivalent
to the original Hamiltonian, we can iterate the procedure of
extracting reaction coordinates, thereby generating a 1D chain
of coupled modes, as illustrated in Fig. 6. This strategy has
been formally studied in the literature [71,73]; here, we derive
it iteratively, starting from the reaction coordinate transforma-
tion. First, we rewrite Eq. (26) by adding the superscript (0)
to the residual modes and quantities related to them:

ﬁx,o o Bg Bo+ Z EQEO) élgoﬁ §l(0)
i>0
+ 3 ROBBY + BB, (64

i>0

The superscript (0) indicates that the residual environment
is coupled to the reaction coordinate By. Correspondingly,
we label the spectral density of the Bl(.o) modes by JO =

res
Do |A§0)|28(w - QEO)). We can now define a new reaction
coordinate:

B=[X O] TR o
i>0 i>0

By repeating the procedure of defining a new residual reser-
voir and rediagonalizing it, as in Sec. III, we obtain

Hy o = 1i0B}By + 12 B} By + hG (BoB] + B} B))
+y° rQVBYBY 4 i VB BV 4+ mE D BIBY,

i>0

(66)
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where Gy =Y, o AP~/ [doJD(w) and Q=

[ dwwlQ(w)/ [ doJ)(w). Thus, from the residual exciton
spectral density, we can extract a new collective mode with
frequency €2, that couples to B, with strength G; and to
a new residual exciton environment with spectral density
generated by Eq. (31) [cf. Fig. 6(b)]. This process can be
iterated indefinitely, thereby generating a 1D chain of coupled
modes. We already know that the first residual spectral density
Jr(eos)(w) is related to the original exciton spectral density J(w)
through Eq. (31). Thus, the iterative procedure of extracting
new reaction coordinates generates a sequence of residual

spectral densities through the recurrence relation

Gl V()
](n)(w) = : S D >
(@) + 72 [Jres (w)]

res

n >0,

o (67)

n—1

where J P (w) = J (), G, =/ [ J{ D (w)dw is the coupling

strength between the modes n and n — 1, and

1 b 1 1
b, (w) = = li Jw . (68
(@) 253&[1 re*(”)[w—u—iz+w—u+ie] (68)

The corresponding mode frequencies are €2, =
[I8 D (w)wdw/ [ I8V (w)dw, and the Hamiltonian at

the nth iteration of the prodedure is thus

H, = hoala. + hGo(alBy + aB)) + W

n n—1
+ Y QBB+ hGip1(B{Biy + BiB], ) + H],
i=0 i=0
(69)

where

A

5 _ N @MAMTAEmM | smp AT | § st Am)
Hn_ZQj BB 4+ 3B, BT 4+ 297 BIBY  (70)
J

describes interactions with the nth residual exciton environ-
ment.

A possible strategy for making the non-Markovian time
evolution tractable is to neglect the nth residual environment,
thereby truncating the chain at the nth level:

H,=H,-H. (71)
This procedure converges toward the exact result as n — oo,
and the number of chain links required to obtain an error
that is low enough for the method to be useful depends on
the specific system studied. For example, it was previously
found that structures with Fano interference effects are very
challenging to capture with a 1D chain representation [82].
Furthermore, the error of a particular n-truncation depends on
the timescale over which one is interested in the dynamics:
If the chain is initially unpopulated, population will flow from
the resonator mode through the chain. This is the relevant
situation in the present case because the initial state is the
thermal state at or below room temperature where there are no
excitons. At longer times, a larger portion of the chain is ex-
plored by nonvanishing populations and thus more chain links
are necessary to resolve the evolution. In the time evolution
of the truncated chain system,we also include dissipation of
the electromagnetic field and excitonic line broadening effects
of the reaction coordinate as discussed in Sec. IV B2, by

evolving the density operator of the resonant field and n chain
modes with the master equation
ap i -
— = ——[H,, p1 +2y.D(@, p
o 5 . P+ 2y D(@. p)

+ 2y, D(Bo, p) + 2y, D(B} By, p).

Although beyond the scope of this paper, we note that
the 1D chain is amenable to numerically efficient and exact
renormalization-group methods [83—88]. Here we shall dis-
cuss how the time evolution within a limited time window can
be accurately captured by using a truncated chain mapping
with a finite number of sites.

(72)

1. Benchmarking

To test the precision of a given truncation n, we can con-
sider the situation in Sec. IV A, where the drive is turned off
and the electromagnetic resonator is initialized in a single-
excitation state. In this case, we can benchmark the truncated
chain expansion against the exact time evolution and evaluate
the error. An example of such a comparison is presented in
Fig. 7. The time evolution in Fig. 7(a) demonstrates that a
chain with more links allows one to evolve the system fur-
ther in time before the error becomes pronounced. This is
further supported in Fig. 7(b), which shows that the relative
error of the truncated chain mapping, as defined in Eq. (63),
decreases when more links are included. Here, the error of
the Markovian master equation, Eq. (62) is indicated with
a dotted grey line, demonstrating that it is possible to go
below this error and thus resolve non-Markovian effects in the
residual exciton environment. Additionally, Fig. 7(c) shows
that the maximum population of the last chain link during
the evolution time decreases monotonically with the number
of chain links. To carry out this analysis, we have neglected
excitonic line broadening effects by setting yx and y, to zero,
since these effects are not compatible with the exact strategy
described in Sec. IV A. We do, however, note that the influ-
ence of the residual exciton environment is expected to be
less important when additional decay channels are present. As
such, we should think of the error in Fig. 7(b) as an upper
bound on the truncation error that is expected when excitonic
line broadening effects are included.

For reference, the numerical benchmark calculations of the
Markovian master equations and the chain-mapped master
equation have also been performed with a larger resonator
linewidth and at higher temperature of 300 K, which means
that the phonon-induced broadening is more pronounced.
These calculations can be found in Appendix E and show
the same overall behavior as the calculations presented here.
However, the effect of the residual excitons is seen to be
smaller, which is attributed to the increased dissipation into
the other decay channels, i.e., through resonator losses and
phonon-induced exciton decay.

2. Pulsed driving in the linear regime

One of the benefits of the chain-mapping technique is
the simplicity of introducing driving with a time-dependent
amplitude, F (¢). For the Markovian master equation derived
in Sec. IV B, this would result in a decay term, X, which is
explicitly time dependent. Here, we use the chain mapping to
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FIG. 7. Comparison between truncated chain mapping and ex-
act solution for WS, coupled to a Gaussian resonator mode with
L =4 nm, L, = 200 nm, 2iy, = 6.6 meV. (a) Time evolution of the
resonator population for the exact solution (black solid) and the chain
mapping with truncation after n links (dashed lines) for different
values of n. For reference, the time evolution calculated using the
Markovian master equation, Eq. (62), is also shown (grey dotted
line). (b) Relative error of the n-truncated chain mappings as a func-
tion of n. The dotted grey line indicates the error of the Markovian
master equation, Eq. (62). (c) Maximum population of the last chain
site over the evolution time span as a function of the truncation
length n.

study the response of the exciton-resonator system to a short
laser pulse that weakly perturbs the system. By making sure
that the initially induced population of the resonant field is
far below unity, the nonlinear exciton-exciton interaction can
be neglected, while the interactions with the residual exci-
ton modes are captured by the chain of bosonic modes. The
Hamiltonian for the truncated chain in a frame rotating at the
driving frequency is

H,(t) = IF (t)(@c + &) + h(we — wq)ala
+ hGo(aBy + acBy)
n n
+ Z R(2; — wd)éjéi + Z hGi(E:’rEifl + BB ),
i=0 i=1
(73)
and we shall focus on a Gaussian pulse amplitude of the form
F(t) = Ae~=0)"/A%, (74)

We also reinstate the excitonic line broadening effects de-
scribed in Sec. IV B 2 with the rates yx and y,.

0.02 L=10.0 nm
(afac)
%]
e
k)
© .
g 0.00
& 0.02 L=4.0nm
0.01 H
0.00 T T
0.0 0.2 0.4 0.6 0.8

Time [ps]

FIG. 8. Response to a short driving pulse in the linear regime
for WS, coupled resonantly (w. = ) to a Gaussian optical mode
with L = 10 nm and 4 nm, respectively, and L, = 200 nm, 2hy, =
6.6 meV, n? + n? = 0.2. The temperature is set to 4 K, leading to
fiyx = 2.1 meV, 'hyx’ = 0.11 meV, and the optical pulse parameters
are A =0.2/Gy, A=0.1/A, and wyg = Qy = w.. The resonator
(orange) and exciton reaction coordinate (blue) populations for the
full system calculated with an n = 30 chain mapping are shown with
solid lines. The corresponding time evolution obtained by ignoring
the residual excitons altogether is shown with dots.

In Fig. 8, the dynamics of the electromagnetic field (orange
solid) and exciton reaction coordinate (blue solid) is plotted
for two different lateral length scales of the electromagnetic
resonator and compared to the corresponding evolution ob-
tained by ignoring the residual excitons (dots). As the lateral
length scale decreases, the exciton cutoff frequency & in-
creases as 1/L?, effectively increasing the interaction between
the reaction coordinate and the residual exciton modes. For
L = 4 nm, we find a relative error of 0.8% in the resonator
field evolution and 0.4% for the exciton reaction coordinate
evolution, when the residual excitons are ignored. This means
that we can justify the use of a Markovian theory with a single
exciton mode when L > 4 nm for the given parameters. In
the next section, we shall investigate the nonlinear response
in this regime. As we shall see, there is a parameter regime
where L is large enough (here above 4 nm) to neglect the
residual exciton modes, yet small enough that the nonlinear
interactions become pronounced.

3. Pulsed driving in the nonlinear regime

To investigate the nonlinear response of the system, we
include exciton interactions in the local exciton reaction co-
ordinate through the term Wg, as described in Sec. III B. To
see the nonlinear response, we need to increase the amplitude
A of the driving pulse. In practice, this means that we need to
resolve a higher number of excitations in the system, whereby
it becomes significantly more challenging to include a higher
number of chain sites. At this point, therefore, we choose the
lateral size of the mode to be sufficiently large that the residual
modes can be neglected (L > 4 nm for the parameters in
Fig. 8). As before, we show in Fig. 9 the time evolution of the
system (solid lines) for different lateral optical confinement
lengths, L. We compare the evolution with the linear response,
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FIG. 9. Nonlinear response of the system due to exciton-exciton
interactions. The solid lines show the resonator (orange) and ex-
citon reaction coordinate (blue) populations calculated from the
full Hamiltonian including exciton-exciton interactions. The dots
and dashed lines show the corresponding time evolution when the
exciton—exciton interaction is neglected. Parameters: A = 1/A and
otherwise as in Fig. 8.

as obtained by removing the interaction term W, from the
Hamiltonian (dots, dashed lines), thereby uncovering the role
of exciton-exciton interactions in the dynamical evolution.
Due to the increase of the nonlinearity as L is decreased,
a larger deviation between the full dynamics and the linear
response is observed. The dominating nonlinear effect is a
reduced energy transfer from the resonant field to the exciton
reaction coordinate, which arises because the transition from
one to two excitons is shifted away from resonance due to
the nonlinear interactions. This is a signature of a polariton
blockade process, i.e., the inhibition of multi-polariton exci-
tations. The dynamics in Figs. 8 and 9 shows that there exists
a parameter regime, where the lateral confinement length is
sufficiently small that the nonlinear interactions influence the
dynamics, yet large enough that the residual excitons can be
ignored. In Ref. [89], we study the impact of the nonlinear
interactions in terms of polariton blockade in detail and estab-
lish the conditions for reaching blockade. Most importantly,
we find that polariton blockade is reached when the nonlin-
ear interaction strength, W, exceeds the polariton dephasing
generated by ;.

V. SEMICLASSICAL LIMIT

As an alternative to the reaction-coordinate approach to
exciton-resonator interactions, we now develop a semiclassi-
cal description of the interaction of the electromagnetic field
with the excitons in terms of the excitonic dielectric response.

This allows us to connect the fundamental material parame-
ters to the dielectric function, which has been experimentally
measured for several materials [59,60]. Furthermore, it allows
us to carry out an independent classical reference calculation,
which we expect to agree with the result of our microscopic
theory in the weak-excitation limit of linear response. This
reference calculation thus serves as an important consistency
check of the microscopic theory.

A. Exciton susceptibility

In a purely classical framework, we can model the electro-
magnetic response of a 2D material in the plane z = zp as a
thin polarizable sheet of thickness d with a relative permittiv-
ity distribution given by

1+ x(w)

(. w) = {1 for |z — 20| < d/2

otherwise. 75

In cases where the sheet is illuminated by an incoming elec-
tromagnetic field, we can calculate the total electric field by
use of the Lippmann-Schwinger equation. For the present
analysis, we can confine the discussion to the case of normal
incidence and consider incoming electric fields of the general
form E;,(r, ) = Eiy(z, w)n, where n is a unit polarization
vector, taken to be linear for simplicity. The total field can
then be calculated as the solution to the equation

Ei(z, 0) = Ein(z, ®)

20+d/2
+ k3 / d7G(z, 7', w)x (0)E (7, w),
z20—d /2
(76)

in which ky = w/c is the ratio of the angular frequency to
the speed of light, and Gg(z, 7/, @) = iexplikolz — Z'|1/(2ko)
is the 1D electric field Green function of the homogeneous
background. For sufficiently thin materials, we can assume
the integrand to be approximately constant, wherefore we can
solve the equation to find

Ein(20, )
1 — k3dGg (20, 20, 0)x (@)

Eioi(20, ) = (77

To establish a link between the fundamental excitonic
properties and the corresponding susceptibility, we consider
the total field generated by weakly driving the excitons with a
set of normal-incidence plane waves of the form

eiw,lz/c

sz

where Z is the depth of the quantization volume. To calculate
the total field, we use the full interaction Hamiltonian with
nonrotating wave terms, Eq. (11), and follow Refs. [90-92]
to derive a Lipmann-Schwinger equation for the vector po-
tential operator Az, w) = nA(z, w), expressed in terms of the
incoming vector potential operator A©(z, w) = nA©(z, w),
of the form

fu (I') =

n, (78)

Az w) = A0, ) + / 4G 2 oV (A, ),

(79)
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where V (z, w) = Vo(w)8(z — z0),

2o . 2
o = 3 Sl 1] ( 1

mhegmic?aly \ w — wy

1
“orw) @

and we have ignored a possible source term for the vector
potential, because we consider a scattering problem, where no
excitons are initially excited. The Green’s function entering
Eq. (79) is related to G as G(z, z/, ) = —Gg(z, 7/, w)/S. We
can solve Eq. (79) to find

A9 (z9, w)
1 + Gg (20, 20, ©)Vo(w)/S’

and since the electric field is the derivative of the vector
potential, we find that the same equation holds for the electric
field, under the substitutions A — E and A® — E©,

By comparing Egs. (77) and (81), we can directly see
that the two expressions are equivalent, when kgd x(w) =
—Vo(w)/S. This requirement yields the expression for the
exciton susceptibility:

A(zo, w) =

(81)

2 [ 2
x(w) = 3 2lPe 0l %( T ) (82)
- wheomyctagd w* \w +wy  © — wp

To connect to susceptibility measurements in the literature,
we note that the exciton line broadening due to nonradia-
tive decay and phonon interactions should also be taken into
account in the susceptibility. We include these effects by a
complex shift of the poles of the susceptibility at @ = Fwyg
into the lower part of the complex plane by the total line
broadening I'y = yx + y,. The resulting susceptibility, which
serves as a model of what one would measure in linear-
response measurements, then takes the form

2
263|P[5u ) n’ 1

w) = _—
x(@) Xa: mhegm}c*ajd @?

1 1
X — — — |- (83)
w+wy+il'y o—wy+ily

The poles of interest are both located in the lower part of
the complex plane, as they should be due to causality of the
electromagnetic response in the time domain, and one of the
poles is at negative real frequencies, wherefore it can often
be neglected. When more exciton transitions are present, a
generalization gives an expression with multiple pole terms.
Combining these pairwise and dropping small terms of order
F,%, we find the familiar form

X@)=3 — I (84)
0,

2 . 9
n— 0° — 2iwly ,

m
where the oscillator strengths, f;,, are given by

2 [ 2
f _ 460|pcv,m : Il|
m — - A A .-
Z 7 hegmdwo madd

o

(85)

With the assumption that the field polarization is in the plane,
such that n2 + nf = 1, we can write the oscillator strength as

2.2
4'e'Opcv,m

m= "5 - 5 - 86
f wmjeohwoatd (86)

This dielectric parameter f;,, has been measured for several 2D
materials and provides a very useful means to determine the
exciton Bohr radius from experiments [59,60]. For WS,, using
the parameters in Table I and the experimentally obtained
value for the 1s exciton /° fo=19 eV? from Ref. [59] yields
the exciton Bohr radius ag = 1.95 nm.

B. Reference calculation

We are now in a position to compare the microscopic
theory to a semiclassical reference calculation. To this end,
we consider a gold nanorod coupled to a monolayer of WS,
and calculate the linear excitation spectrum when driving
with an external laser at different frequencies. The nanorod
is modeled as a cylinder with spherical end caps, as depicted
in Fig. 1, a diameter of 30 nm, and a total length of 90 nm.
For convenience, we define a coordinate system in which the
nanorod is oriented in the x direction, and its center is at the
position (x,y, z) = (0, 0, 20 nm). For these calculations, we
use a Drude permittivity model of the form

2
- (87)
w(w+iy)

with fiw, = 6.9¢€V and iy = 0.2 eV. The numerical QNM
calculations were carried out with the boundary-element
method MNPBEM [93] and with the iterative search method
of Ref. [94], see Ref. [44] for details. Mesh generation us-
ing triangular surface elements was done by the open source
mesh generator GMSH [95]. The dipolar QNM of interest has
a complex resonance frequency of @.£y/2mc = 0.1625(2) —
0.00920(2)i. When the field is scaled to unity at the position
ro = (0, 0, 0), the complex inverse norm of the QNM is found
to be £3E2(ro)/ ((F.(r)[fe(r))) = 1.246(2) — 0.0307(5)i. Here,
£o = 100 nm is a fixed length scale that is used to express
the QNM frequency and norm in dimensionless units. In the
single-QNM approximation, it can be shown that the nor-
malization factor S, appearing in the derivations in Ref. [45]
always takes the value S, = 1, which is the value that we used
for the calculations in this paper. The exciton spectral density,
J(w) and the residual spectral density, Ji.s(@) (green dashed),
are shown in Fig. 10(a) along with the absolute value of the
in-plane components of the field profile F, as derived from
the fundamental dipolar QNM and discussed in Appendix A.
The dipolar nature of the field profile results in a nontrivial
in-plane distribution of the electric field as shown in the inset
of Fig. 10 for the case of z = z9. It follows from the analysis
in Sec. IIT A that this is the field distribution defining the ex-
citon reaction coordinate and the coupling constant Gy, recall
Eq. (36). Running a benchmark calculation as described in
Sec. IV B 1, we find that the relative error obtained by neglect-
ing the residual exciton modes is less than one in a thousand,
wherefore we neglect the residual excitons in the analysis. We
then calculate the excitation spectrum as the steady-state pho-
ton number, ng(wq) := Tr[&l'&c Dss(wq)] where pgs(wq) is the
steady-state density operator of Eq. (62) with constant driving
(frequency wq and driving strength F'). For these calculations,
the driving strength AF was set to a very low value of 36ueV
to ensure that the system is in the linear-response regime.

As a semiclassical reference calculation, we can also
calculate the excitation spectrum through a solution of the

er(r,w) =1
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FIG. 10. (a) Exciton spectral density (blue solid) and residual
spectral density (green dashed, scaled up by a factor of 5 x 10%)
for a single quasinormal mode of a gold nanorod coupled to a
monolayer sheet of WS, as illustrated in Fig. 1. The projected field
profile |F*(r,0)]* + |F)(r, 0)|* is shown in the inset. (b) Excita-
tion spectrum of the system when driven by an external laser field,
calculated with semiclassical theory, I(wq) (blue circles), and the
microscopic quantum model using the Markovian master equation,
ngs(wq) (orange solid line). To compare the semiclassical spectrum
(calculated as the field intensity in the middle of the nanorod) with
the quantum spectra (calculated as the steady-state expectation value
of the resonator population), the spectra have been scaled with their
maximum values. The light-matter coupling strength calculated from
the quantum theory [Eq. (36)] is iGy = 35.1 meV.

classical electromagnetic problem, where the WS, monolayer
is modeled as a sheet of thickness d = 0.618 nm with a
dielectric function corresponding to Eq. (84) with experi-
mentally measured parameters [59], 2 fo=1.9eV?, hwy =
2.014 eV, and the exciton linewidth A’y = 16.1 meV, cal-
culated from Table II using 7 = 300 K. The reference
calculations were done with MNPBEM and the same mesh for
the nanorod as was used for the QNM calculations; additional
scattering from the 2D material was included by the use of the
appropriate background Green’s function [96] corresponding
to a thin sheet with a single Drude-Lorentz pole. In practical
experiments, the sample will rest on a substrate and there will
be additional contributions to the optical response of the WS,
material and other similar corrections, which will lead to shifts
in the resonance frequencies of the nanorod and possibly the
2D material. In Appendix C, we investigate the effect of a
substrate on the electromagnetic response and show that the
nanorod can always be tuned into resonance with the excitons
by various means, for example, by varying the length of the

nanorods. To simplify the model and focus on the dominating
physics, we have left out these effects here.

The driving laser field was modeled as an incoming plane
wave with frequency wq, and for each value of this fre-
quency, the resonator excitation was measured as the field
intensity in the middle of the nanorod, I(wg). To compare
the field intensity /(wq4) and the steady-state photon number
ngs(wq), we normalize both to their maximum values and plot
them together in Fig. 10(b). The asymmetry in the semiclas-
sical spectrum can be attributed to a frequency-dependent
incoupling factor between the external driving field and the
resonator field term, which can be derived from coupled-mode
theory [44] but which is not accounted for in the present
approach. The remaining discrepancy is attributed to the non-
retarded coupling and the approximation that only a single
QNM is taken into account in the microscopic model. Impor-
tantly, we find that the calculated splitting of the spectrum
in the two independent calculation methods differ only by
0.5%. In combination with the general qualitative agreement
between the two spectra, we interpret this as a demonstration
of consistency between the microscopic quantum model and
the semiclassical theory based on measurements of the linear
exciton susceptibility. In this limit of linear response, it is an
interesting fact that one can also treat the problem from a
purely electromagnetic point of view and model the response
by use of two QNMs, as recently presented in Ref. [97]. In
closing, we emphasize that the general microscopic model is
applicable also beyond the linear, semiclassical regime, when
nonlinear effects and few-exciton statistics become important,
as discussed in Secs. III B and IV C 3, as well as in Ref. [89].

VI. CONCLUSION

In conclusion, we have developed a microscopic quan-
tum theory for the interaction between an electromagnetic
resonator and excitons in a pristine sheet of 2D semicon-
ductor material. In particular, by invoking a basis change
of the exciton continuum, we have identified a collective
exciton mode, termed the exciton reaction coordinate, that
effectively accounts for the light-matter interaction. We have
derived analytic expressions for the coupling strength between
the resonant electromagnetic field and the reaction coordi-
nate, thereby showing that it is independent of the lateral
confinement of the field. To calculate the dynamical evolu-
tion of the system, we have introduced and analyzed several
Markovian and non-Markovian approaches and assessed their
regimes of validity. Using these strategies, we have evaluated
the importance of the residual exciton environment, which
is coupled to the reaction coordinate. We find that the in-
fluence of the residual excitons becomes more pronounced
when the lateral optical mode dimensions become smaller. In
many cases, however, the residual excitons can be ignored
altogether. For the extreme regime where the electromag-
netic field is laterally confined to a characteristic length scale
of a few nanometers, it becomes necessary to account for
the residual excitons. We have developed an iterative chain
representation of the residual exciton environment, which is
able to resolve non-Markovian effects and thus to go beyond
the Markovian master equation. We have also derived the
linear dielectric response of the excitons, which allows one
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to connect the material parameters to the dielectric function
and to consistently interface the microscopic theory with
a semiclassical approach. Furthermore, we have calculated
the nonlinear interaction strength of the excitons within the
reaction coordinate and found that it scales as the inverse
area of the electromagnetic field in the 2D material, meaning
that laterally confined electromagnetic fields lead to stronger
exciton-exciton interactions. In this context, we have found
that there exists an interesting parameter regime, where the
lateral confinement length scale is large enough that the resid-
ual excitons can be ignored, but small enough that nonlinear
effects are significant.
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APPENDIX A: ELECTRIC-FIELD OPERATORS
OUTSIDE THE RESONATOR

Expansions based on QNMs can often provide a good
approximation to the electromagnetic field at positions inside
or close to electromagnetic resonators. In the present case of a
single QNM approximation, in particular, we can expand the
electric-field operator as

~ how. -
B, w) =1 ch f.(r,@0a(@) + He, (A
€0

where &I and a. are bosonic raising and lowering operators
obeying the commutation relation [a.(?), &Z (t)] =1 [45]. At
positions far away from the resonator, the QNM expansions
in general are expected to fail [44] and this poses a challenge
for the application at hand, which involves infinitely extended
sheets of 2D materials. Since the electric-field operator obeys
Maxwell’s equations, however, we can calculate the field op-
erator at general positions r by use of the 3D electric-field
equivalent of Eq. (79),

Etot(rs w) = Eo(l‘, )

2 A
H(2) [ #rer madr o o),
C
(A2)

where G(r,r’, w) is the electric-field Green tensor of the
homogeneous background material of permittivity eg, and
A€e(r, w) = er(r, w) — €p is the change in the relative per-
mittivity defining the electromagnetic resonator. The first term
in Eq. (A2) represents the free-space electric-field operator in
the absence of the resonator and therefore does not contribute

to the resonant field dynamics that we aim to describe. For
these calculations, therefore, we drop this term and rewrite
the expression by substituting the QNM expansion of the
electric-field operator in Eq. (A1) as

how,
260

Er,w)=i F.(r, w)a. (o), (A3)

where
F.(r, ) = (%)2 / PG, v, 0)Ac(r, o)E(r') (A4)
14

is the analytical continuation of the electric field QNM onto
the real axis [65]. Equation (A3) represents the fully retarded
electric-field operator pertaining to the field of interest in
the electromagnetic resonator. In the temporal dynamics, the
retardation becomes explicitly evident as the convolution in
Eq. (6). When coupling to very localized excitons, however,
we can simplify the expression considerably by evaluating
F.(w) at = w, to focus on the instantaneous response only.
In the same spirit, we restrict the analysis to the local dy-
namics by replacing G(r, r’, w) in Eq. (A4) by the quasistatic
Green tensor. In doing so, we ensure that the integral defining
the coupling strength in Eq. (36) is convergent.

APPENDIX B: EXCITON DISSIPATOR

The derivation of the exciton dissipator follows the stan-
dard approach as described in detail in Ref. [75]. In this
Appendix, we apply the approach to the present situation,
where the resonator and exciton reaction coordinate are
treated as an open quantum system, which is coupled to an
environment consisting of the residual exciton modes. Starting
from Eq. (57), we decompose the interaction Hamiltonian as
ﬁSR = h(S’lﬁl + S‘zléz), where

A _ A»‘_ A _ ~*.’.‘,
S, =B, Ri=>) 1B B1)
i>0

and 3‘2:5‘?, Iég:IéJ{. To simplify the expression for
the interaction-picture time evolution, we introduce the
eigenstate-projected system operators

Siw):= Y TESTE, (B2)
E&'—-E=w

with i € {1, 2}, where T1(€) is the projector onto the system

subspace with eigenenergy £ with respect to Hg,
&) = Z 11)(I|, Hs|l) = ha|l). (B3)

a)1=5

We distinguish between S‘f (®) and [S;(w)]T such that the for-
mer expression refers to ., _, TI(E)S/TI(E') and the lat-
ter to Yo o [T(E)STI(E)]" = 87 (—w). The interaction-

picture time evolution of the projected system operators is
then

eiﬁsz/hgi(w)e—iﬁsz/h = Si(w)e ", (B4)
Using the completeness of the eigenstates of Hs, we find

$i=Y Siw)=)_Si(-w), (BS)
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FIG. 11. Semiclassical excitation spectrum of gold nanorod cou-
pled to monolayer WS, as in Fig. 10, calculated without (left panel,
blue) and with (right panel, red) dielectric substrate, and for nanorod
lengths between 75 nm and 95 nm as indicated with text.

$it) =Y Si@)e™™ =" Si(~w)e,  (B6)
and the dissipator due to the residual excitons can thus be
written as

Kipl=->" Z/O dt A (D) [Si(—w), §;(0)p]

ij wo
o0 . ! A A
+ / AT A (—0)e T [pS,(~), Si(@)], (BT)
0

where A;j(t) = TrR{Iéie’iﬂkf/hléje+iﬂkf/”ﬁg} is a residual ex-
citonic correlation function. Here, i)g is the initial density
operator of the residual exciton environment, which is taken
to be the vacuum state as a good approximation to the ther-
mal state of a semiconductor. As described in Ref. [75],
a so-called secular approximation is enforced by keeping

40 - (a)
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<
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FIG. 12. (a) Coupling strength G, of a nanorod resonator cou-
pled to monolayer WS, as in Sec. VB, for varying lengths of
the nanorod, L. (b) Relative deviation of the coupling strength as
compared to L = 90 nm. The blue data points and lines show the
deviation of the raw coupling strength, Gy, whereas the orange data
points and lines show the coupling strength corrected for the shift in
resonance frequency that accompanies the change in the resonator

length, \/w.Gy.

only terms with w = @’ in the summation, which is justified
by the fact that a factor of exp{i(w — ')t} appears in the
sum for the interaction-picture time evolution of the reduced
density operator; if w # ', the exponential is assumed to
average out to zero. In addition to simplifying the expres-
sion, the secular approximation ensures that the dynamics
generated by the master equation is completely positive and
trace preserving [75,98]. Noting that, due to p3 being the vac-
uum state, the only nonzero correlation function is Ajx(7) =
Do |A:]> exp{—i(£2; — wq)T}, the secularized residual exci-
ton dissipator becomes

KIp] = = Y (Treu(@)DIBo(), p]

w

— i Ares(@)[(Bo (@) Bo(w), p1}, (B8)
where
[res(@) = 2Re{ / ~ dT A 2(7)e ™" } (B9)
0
Ares(0) = Im{/mdrAlg(t)ei“”}. (B10)
0

The second term in Eq. (B8) amounts to a shift of the reso-
nance energies and will be neglected here. The remaining part
describes exciton dissipation with a rate that can be written in
terms of the residual spectral density as in Eq. (59).

APPENDIX C: EFFECT OF DIELECTRIC SUBSTRATE

To simplify the model and highlight the dominating
physics, the reference calculations in Sec. VB were per-
formed for a gold nanorod above a thin sheet of material
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FIG. 13. Error calculation of the Markovian master equations
corresponding to Fig. 5, but with the resonator decay rate increased
to 2iiy, = 20 meV.

characterized by a single Drude-Lorentz pole. Additional
corrections to the model will serve primarily to shift the res-
onance frequency of the nanorod or the excitonic transitions.
These effects, therefore, are not so different from unknown
perturbations in practical experiments, which can be compen-
sated by tuning the material system to bring it into resonance.
In Fig. 11, we illustrate how such a tuning can be performed
by changing the nanorod length, similar to the approach of
Wen et al. [3] and Geisler et al. [9]. The left panel of Fig. 11
shows calculations identical to those in Fig. 10 of the main
text, except for the use of nanorods of different lengths rang-
ing from L = 75 nm to L = 95 nm. Clearly, by changing the
length of the nanorods, one is able to tune the system into
resonance. The right panel of Fig. 11 shows the situation
when the system is changed by introducing a substrate with
permittivity egps = 2.12 extending infinitely downward from
just below the thin sheet of 2D materials. Notably, we did not
include an encapsulation layer, since typical experiments of
this sort are performed without [3—10]. Furthermore, the full
experimentally measured response of WS; is included with all
poles, corresponding to not only the lowest-lying A ls-exciton,
but also the higher-lying exciton states, as detailed in Ref.
[59]. In this case, the resonance condition has changed, so it
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FIG. 14. Error calculation of the chain-mapped master equation
corresponding to Fig. 7, but with the resonator decay rate increased
to 2hiy, = 20 meV.

is now fulfilled by nanorods of approximately 85 nm length,
but the general anticrossing trend in the curves is unchanged,
since the dominating physics is still that of two strongly cou-
pled harmonic oscillators.

APPENDIX D: VARIATION OF COUPLING STRENGTH
FOR NANORODS OF DIFFERENT LENGTH

To substantiate the claim that the coupling strength Gy is
largely independent of the lateral confinement length scale,
we explicitly compare the value of Gy for gold nanorods
of different lengths ranging from L = 75 nm to L = 95 nm,
but otherwise identical to the one that was investigated in
Sec. VB, see also Appendix C. Figure 12(a) shows Gy as a
function of the nanorod length, L, and the relative difference
compared to L = 90 nm is shown in Fig. 12(b) (blue data
points and lines). While the coupling strength increases as a
function of length, this effect is mainly due to the change in
the resonance frequency w., which decreases with increasing
length, as seen in Fig. 11. In Eq. (36), a factor of 1/,/w¢
appears in the coupling strength. Thus, to make a meaningful
comparison of the effect of the spatial mode distribution on the
coupling strength, we should multiply the coupling strength
by /o to correct for the shift in resonance frequency. This
comparison is shown in Fig. 12(b) with orange data points
and lines and reveals that the change in resonator length by
20% generates a vanishing shift in ,/w:Go of around 1%.
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FIG. 15. Time evolution calculated with the chain-mapped mas-
ter equation for pulsed driving, compared to the case where the
residual excitons are ignored, as in Fig. 8, but with the resonator
decay rate increased to 2/iy. = 20 meV and the temperature in-
creased to 300 K, leading to the phonon-induced exciton decay rate
hyx = 7.7 meV and decoherence rate fiy,” = 8.4 meV.

APPENDIX E: COMPARISON OF TIME-EVOLUTION
METHODS WITH INCREASED DISSIPATION AND
DECOHERENCE

In Sec. IV, three different approaches for calculating the
time evolution of the exciton-resonator system were presented
and compared to assess their validity. For completeness, we
present the same comparison calculations with the only dif-
ference that the resonator decay rate has been increased
to 2hiy. = 20 meV and the temperature has been increased
to 300 K; the resulting phonon-induced exciton decay rate
is iyx =7.7meV and the dephasing is 7y, = 8.4 meV.
Figure 13 corresponds to Fig. 5 and shows the comparison
of the Markovian master equations with the exact calculation.
Figure 14 corresponds to Fig. 7 and shows the comparison of
the chain-mapped master equation with the exact calculation.
Remember that excitonic line broadening due to phonon inter-
actions is not included in these benchmark calculations, since
the exact memory-kernel equation, Eq. (53), is incompatible
with these effects. Figure 15 corresponds to Fig. 8 and shows
the comparison between the chain-mapped master equation
and the case where the residual exciton environment is ne-
glected for pulsed driving. Here, phonon-induced broadening
has been included.
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