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I. ITERATIVE PROCEDURE FOR NONLINEAR PROBLEM

We here discuss an iterative approach to solving the nonlinear equation

λφ(r) = λφext(r) + VD
[
f [φ]

]
φ(r), (S1)

which is essentially just the driven correspondent of Eq. (4), and where we have emphasized the dependence
of D on φ(r) through f (r). The problem is evidently nonlinear, but can be solved efficiently by iteration
with only linear algebra at each step. We follow the usual iteration scheme, as e.g. also used previously in
the studies of bistability in dielectric waveguides [S1].

1. Compute a linear solution based on an initial guess of f = fini, i.e. solve Eq. (S1) with D
[
f [φ]

]
→

D[ f = fini]. Denote the obtained solution as φ[0]. Set the iteration step m = 0.
2. Calculate the mth guess at the occupation function f [m] from the potential φ[m].
3. Compute the (m + 1)th iteration by solving the linear system λφ[m+1] = λφext + VD

[
f [m]]φ[m+1].

4. Iterate steps 2 and 3 until convergence, otherwise update iteration step m→ m + 1.

We impose convergence criteria corresponding to the simultaneous fulfillment of (with tol = 10−5)

max
r∈Ω

∣∣∣φ[m+1](r) − φ[m](r)
∣∣∣/ max

r∈Ω

∣∣∣φ[m](r)
∣∣∣ < tol, (S2a)

max
r∈Ω

∣∣∣ f [m+1](r) − f [m](r)
∣∣∣/ max

r∈Ω

∣∣∣ f [m](r)
∣∣∣ < tol, (S2b)

being of standard type for iterative approaches to nonlinearity [S1]. In all considered cases the iterative
procedure converged after at most several hundred iterations. One exception should be mentioned however;
the dipolar eigenmodes at field strengths 3 × 105 V/cm and 3.5 × 105 V/cm failed to converge after 1250
iterations for k‖ & 5 and are consequently absent in Fig. 1 for these momenta. This could likely be
remedied by a more elaborate stepping procedure, though such investigations have not been pursued
further in this work.

Two additional extensions of the simple iterative scheme described above are employed. Firstly, for
numerical stability we apply a linear mixing scheme for updating guesses on f , specifically we use
D
[
f [m]
mix

]
with f [m]

mix = (1 − ξmix) f [m−1] + ξmix f [m] in step 2 (mixing parameter ξmix = 0.275) rather than
the unmixed D

[
f [m]]. Secondly, the initial guess fini is always taken from the previous field strength in

ramping scenarios. This provides a significant numerical speed-up and, crucially, allows us to investigate
hysteresis and bistability. The initial guess at the first field strength is naturally fini = 1.

For eigenmodal calculations where φext = 0, we normalize φn at each iteration to impose the desired
ribbon-averaged field strength 〈|E(r)|〉, and in addition determine ωn from λn(ωn) by numerically solving
the equation in the complex frequency-plane.

A. Ramping details

As discussed in the main text, we compute, for each fixed energy ~ω, solutions to Eq. (S1) for a ramp-array
of many field-strengths, going both up and down. We here explicate the rather straightforward details
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of this array: consider for each ~ω a ramp-array {E0,n}
N
n=1 with E0,n+1 > E0,n and with E0,1 sufficiently

small to be considered a linear perturbation. Starting from E0,1 we compute associated solutions and
proceed, generally, to field strength E0,n+1 with initial guesses on f and φ (provided to step 1 of the
iterative procedure discussed in Section I) obtained from the nth solution. This defines the upward ramp,
corresponding to slowly turning the incident intensity up. Upon reaching n = N we invert the procedure
and follow a downward ramp, in the pattern E0,n → E0,n−1, corresponding to slowly turning the intensity
down.

II. MATRIX REPRESENTATION OF V AND D IN A DISCRETIZED BASIS

We here elaborate the reduction of the differential and integral operators D and V to matrix representations
D and V using an equidistant discrete basis. Specifically, we discuss the 1D ribbon case, although the
generalization to general 2D restrictions is straightforward. Specifically, we imagine a system in the
xy-plane, translationally invariant along y and with finite extent along x. For simplicity, we assume just
a single ribbon, such that x is limited to the simple domain x ∈ [0, 1]. Furthermore, as the operators
necessarily act on a potential φ(r), we impose translational invariance along y by the decomposition
φ(r) = φ(x)eik‖y.

Starting with the differential operator D, we consider its operation onto φ(r), which takes the form
Dφ(r) = ∂x[ f (x)∂xφ(x)]eik‖y − k2

‖
f (x)φ(x)eik‖y. By extension, we define the operation of D onto the

single-variable function φ(x) through Dφ(x) ≡ ∂x[ f (x)∂xφ(x)] − k2
‖

f (x)φ(x). To proceed, we introduce
a discretization of the x-coordinates as {xj}

N
j=1 with associated values φj ≡ φ(xj) and fj ≡ f (xj) (we take

N = 150, being well-converged in all considered cases). Though not strictly necessary, we assume
equidistant xj with constant spacing xj+1 − xj = a, see Fig. S1.
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FIG. S1 Sketch of the discretization approach applied to a single ribbon.

The matrix elements Djl of the finite-element representation of D is then defined by Dφj =
∑

l Djlφl. The
elements can be deduced using finite differences at the midpoints. Specifically, using central differences
∂x[ f j∂xφj] ' a−1(mj − mj−1) where mj defines midpoint-values of the function m(x) ≡ f (x)∂xφ(x) such
that mj ' (2a)−1( fj+1 + fj)(φj+1 − φj), see Fig. S1. For all interior points, j ∈ [2,N − 1], this then allows a
decomposition of Djl as the tridiagonal matrix

Djl = 1
2a2

[
δj−1,l( fj−1 + fj) − δjl( fj−1 + 2 fj + fj+1) + δj+1,l( fj + fj+1)

]
− δjlk2

‖
fj. (S3a)

At the end-points j = 1 and j = N we explicitly account for boundary conditions. Specifically, we ensure
a vanishing of normal current, equivalent to the condition ∂xφ(x) = 0 for x = 0 and x = 1. In turn, this
forces m0 = mN = 0, allowing

D1l = 1
2a2 ( f1 + f2)(−δ1,l + δ2,l) − δ1,lk2

‖
f1, (S3b)

DNl = 1
2a2 ( fN−1 + fN)(δN−1,l − δN,l) − δN,lk2

‖
fN . (S3c)

As an alternative to taking explicit account of the boundary condition, one can allow a slightly larger
x-range, and explicitly include points with f (r) = 0 outside r ∈ Ω – the step in f (r) at r ∈ ∂Ω then mimics
an edge charge and accounts numerically for the boundary condition; such a procedure may be preferable
in finite structures without any geometric symmetries compatible with a square grid.

The integral operator V is similarly amenable to explicit expression on the equidistant grid. Specifically,
letting V operate on a function g(r) = g(x)eik‖y one finds [S2; S3]

Vg(r) = eik‖y
∫

dx′ 2K0(k‖|x − x′|)g(x′), (S4)
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where k‖ > 0 is assumed and with K0 denoting the zeroth order modified Bessel function of the second
kind. Assuming a slowly varying g(x) and an equidistant {xj} then allows a matrix decomposition of V via
Vgj =

∑
l Vjlgj where [S4]

Vjl = 2
∫ xl+a/2

xl−a/2
dx′ K0(k‖|xj − x′|) = π

∑
x̃=xjl±a/2

x̃
{
K0(k‖|x̃|)

[
L1(k‖|x̃|) + 2

π

]
+ K1(k‖|x̃|)L0(k‖|x̃|)

}
, (S5)

with xjl ≡ xj − xl and L0,1 denoting modified Struve functions of zeroth and first order.

A final detail which should be discussed is the special case k‖ = 0, where the kernel K0(k‖|x − x′|)
in Eq. (S5) diverges. Despite this divergence, finite and meaningful matrix elements can be retrieved
by invoking charge conservation. Specifically, we note the small argument expansion K0(k‖|x − x′|) ∼
− ln(|x − x′|) − ln(k‖) + α where α = ln(2) − γem (γem is the Euler–Mascheroni constant) [S4]. The
x′-independent term − ln(k‖) + α gives a contribution [− ln(k‖) + α]

∫
dx′ g(x′) to Eq. (S4) and appears

divergent as k‖ → 0. Nevertheless, this contribution vanishes for the functions g(r′) of relevance since they
always represent induced charges [as evident from Eq. (3)] and obey charge conservation

∫
dx′ g(x′) = 0.

As such, the k‖ = 0 case can be calculated by simply letting K0(k‖|x − x′|)→ − ln(|x − x′|) in Eq. (S5) [S3],
yielding Vjl = −2

∑
s=± s(xjl + s a

2 ) ln(|xjl + s a
2 |) for k‖ = 0.

This concludes the real-space discretization approach for reduction of the abstract operator equation of
Eq. (4) into a matrix equation λφ = VDφ with φ denoting the vector form of φj.

III. PERTURBATION ESTIMATE OF THE NONLINEAR SHIFT OF EIGENFREQUENCIES

We here provide the derivations that allow the approximate result of Eq. (5). As we explain below, the
approach relies on the formulation of a Hermitian eigenproblem followed by application of standard
perturbation theory to a spatially inhomogeneous problem.

The compound operator VD defined in Eq. (4) is – though numerically practical – inconvenient for
analytical considerations, because it is not symmetric. However, the problem can (of course) be cast as a
Hermitian eigenproblem with eigenvalues λn [though, strictly speaking, only for real, positive occupation
functions f (r), which we restrict our analysis to here], as also noted recently in Refs. [S5; S6]. Specifically,
consider the application of the scaled gradient operation −

√
f (r)∇ onto Eq. (3):

− λ
√

f (r)∇φ(r) =
√

f (r)∇
∫

Ω

d2r′ V(r, r′)∇′ ·
{ √

f (r′)
[
−

√
f (r′)∇′φ(r′)

]}
. (S6)

Defining the scaled in-plane field ξ(r) ≡ −
√

f (r)∇φ(r) and manipulating further allows

λξ(r) =
√

f (r)∇
∫

Ω

d2r′ V(r, r′)∇′ ·
[ √

f (r′)ξ(r′)
]

a
=

√
f (r)∇

{∫
Ω

d2r′ ∇′ ·
[
V(r, r′)

√
f (r′)ξ(r′)

]
−

∫
Ω

d2r′
[
∇′V(r, r′)

]
·
[ √

f (r′)ξ(r′)
]}

b
= −

√
f (r)∇

∫
Ω

d2r′
√

f (r′)
[
∇′V(r, r′)

]
· ξ(r′)

c
= −

∫
Ω

d2r′
√

f (r) f (r′)
[
∇ ⊗ ∇′V(r, r′)

]
ξ(r′) (S7)

with associated steps a − c explicated below for convenience:

a. Application of chain rule to expand integrand.
b. The first integral term in step a vanishes, as can be deduced by application of the divergence theorem

which transforms the term to
∮
∂Ω

V(r, r′)
√

f (r′)
[
ξ(r′) · n′

]
. The integrand vanishes for all r′ ∈ ∂Ω

due to the no-spill boundary condition on the induced current which forces ξ(r′) · n′ = 0 on r′ ∈ ∂Ω.
c. The term

√
f (r)∇ is taken under the integral sign. ∇ operates on r and hence only on V(r, r′). The

operation ∇
{[
∇′V(r, r′)

]
·v(r′)

}
is rewritten in the equivalent outer-product form

[
∇⊗∇′V(r, r′)

]
v(r′)

with elements [∇ ⊗ ∇′]i j = ∂ri∂r′j .
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We then define the operator M by its action on a field-ket |ξ〉 [where, as usual, 〈r|ξ〉 ≡ ξ(r)]

〈r|M|ξ〉 ≡
∫

Ω

d2r′
√

f (r) f (r′)
[
∇ ⊗ ∇′V(r, r′)

]
ξ(r′), (S8)

with associated eigenspectrum (−λn) and |ξn〉:

(−λn)|ξn〉 = M|ξn〉. (S9)

The operator M is evidently symmetric, positive semi-definite, and thus Hermitian. Aaccordingly, the
eigenspectrum {−λn} is non-negative and real; and the eigenkets |ξn〉 are orthogonal 〈ξn|ξn′〉 = δnn′〈ξn|ξn〉

and span the solution space for r ∈ Ω.

With these facts established, we can now discuss a perturbation treatment. Specifically, we consider the
simple case where f (r) = f (0) + δ f (1)(r) for r ∈ Ω with “groundstate” f 0 = 1 and perturbation f 1 with
strength δ. The corresponding expansion of M = M(0) + δM(1) + O(δ2) is found by expansion of Eq. (S8),
yielding

〈r|M(0)|ξ〉 =

∫
Ω

d2r′
[
∇ ⊗ ∇′V(r, r′)

]
ξ(r′), (S10a)

〈r|M(1)|ξ〉 =
1
2

∫
Ω

d2r′
[
f (1)(r) + f (1)(r′)

][
∇ ⊗ ∇′V(r, r′)

]
ξ(r′). (S10b)

Since M is a Hermitian operator usual perturbation theory applies [S7]. Specifically, for a “groundstate”
eigenspectrum {−λ(0)

n , |ξ
(0)
n 〉} the leading-order correction to the perturbed eigenvalue λn = λ(0)

n + δλ(1)
n +O(δ2)

is derivable by application of Eqs. (S10) [by using the (r, r′)-symmetry of the resulting equation]

λ(1)
n = −

〈ξ(0)
n |M1|ξ

(0)
n 〉

〈ξ(0)
n |ξ

(0)
n 〉

= λ(0)
n
〈ξ(0)

n | f (1)|ξ(0)
n 〉

〈ξ(0)
n |ξ

(0)
n 〉

.

For nonlinear purposes, we unfortunately do not know the exact perturbation f (1) as it should be determined
self-consistently with the total field |ξn〉. However, for low field-strengths this self-consistency can be
neglected and we can approximate f [|ξn〉] ' f [|ξ(0)

n 〉] with |ξ(0)
n 〉 referring to the electric field predicted by a

linear calculation (at the desired field strength). For the Kerr-type nonlinearity of Eq. (1) the resulting
correction is therefore [assuming vanishingly small loss and noting ξ(0)(r) = E(0)(r) for f (0) = 1]

λ(1)
n ' −λ

(0)
n

9
8

∫
Ω

d2r |E(0)(r)|4

E2
sat

∫
Ω

d2r |E(0)(r)|2
= −λ(0)

n
9
8
〈|E(0)(r)|4〉

E2
sat〈|E(0)(r)|2〉

, (S11)

with Esat similarly evaluated at the linear resonance frequency ω(0)
n associated with λ(0)

n . Finally, the result
of the main text, Eq. (5), is obtained by invoking the relation between eigenvalues λn and eigenfrequencies
ωn together with the lossless intraband conductivity σ(1)(ω) ' ie2εf/π~

2ω.

IV. QUALITATIVE ANHARMONIC OSCILLATOR MODEL

We review the basics of the simple anharmonic oscillator model [S8; S9], and discuss how it – in
connection with a polarizability consideration – explains the π phase-shift observed for the bistable
solutions in Fig. 3(c).

Before considering the nonlinear problem, we note first that the field profiles depicted in the red- and
green-framed maps of Fig. 3(c), corresponding to energies just below and above the resonance energy
~ω(0), exhibit the well-known π phase shift between each other. The phase-shift can be appreciated
e.g. by inspection of the linear harmonic-oscillator polarizability α(ω) ∝ [(ω(0))2 − ω(ω + iγ)]−1 which
exhibits a sign-change of its real part as ω traverses the resonance at ω(0): as a result, the induced dipole
p(ω) = α(ω)E0 changes sign for ω ≶ ω(0), and correspondingly so for the induced fields. As noted in
the main text, a similar phase-shift is observed in the bistable comparison, see black-framed modes in
Fig. 3(c). Again, the origin of the sign change can be appreciated from a polarizability consideration by
including a third-order anharmonic term to the harmonic oscillator model [S9]; we do this below.
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In this qualitative model, we represent the induced dipole by a single (time-dependent) coordinate x, which
obeys the simple equation of motion

mẍ + mγẋ = −e f E0(t) − ∂xU(x), (S12)

with an effective anharmonic restoring potential U(x) = 1
2 m(ω(0))2x2 − 1

4 max4, effective oscillator mass m,
linear resonance ω(0), anharmonic parameter a (note that a > 0 in our case cf. sign of Kerr conductivity),
and coupling factor f . We seek the solution that oscillates at e−iωt in response to a perturbation E0(t) =

E0(ω)e−iωt, i.e. the Kerr response; we denote this term by x(1ω)(ω)e−iωt. Working with Eq. (S12) one finds
(omitting declaration of ω-dependence)

m
[
(ω(0))2 − ω(ω + iγ) − 3a|x(1ω)|2

]
x(1ω) = −e f E0. (S13)

The polarizability α(1) is linked to x(1ω) via the induced dipole p(1ω) = −ex(1ω) = α(1ω)E0, allowing (ignoring
loss, being nonessential for the present considerations)[

(ω(0))2 − ω2 − 3ae−2|α(1ω)|2E2
0

]
α(1ω) = e2 f /m. (S14)

For the bistable scenarios the term (ω(0))2 − ω2 is always positive, see e.g. Figs. 2 and 3. Depending
on the magnitude of 3ae−2α(1ω)E2

0 relative to (ω(0))2 − ω2 it is then clear that polarizability-solutions of
opposing sign can arise, depending on the sign of the terms bracketed on the left-hand side of Eq. (S14).
Furthermore, if we denote the positive and negative solutions α(1ω)

+ and α(1ω)
− , respectively, it can then be

deduced by direct inspection of Eq. (S14) that |α(1ω)
+ | < |α

(1ω)
− |. In other words, the induced dipole – and

hence the induced fields – of the positive solution should be lower than its negative counterpart; upon
identifying the lower branches of Fig. 3(b) with α(1)

+ and vice versa for the upper branch, we see that this is
exactly the case. As such, the anharmonic model describes not only the phase-shift, but also the magnitude
interrelationship. Lastly, we mention for completeness that the anharmonic model describes also a third
solution, which, however, is physically irrelevant as it is unstable (and correspondingly is not found in the
iterative procedure employed in this study, nor in experimental investigation).

V. PLASMONIC SOLITONS AND THE NONLINEAR SCHRÖDINGER EQUATION

As a simple, practical example of our general considerations, we here discuss how our results can be
applied to study 1D plasmonic solitons within the framework of the 1D nonlinear Schrödinger equation
(NLSE). Specifically, pulse propagation along the ribbon’s y-direction (i.e. along k‖) can be well-described
by the NLSE under the same assumptions underlying its use in nonlinear fiber optics [S10]. For a
slowly varying pulse (in y) with center frequency ω0 and associated center momentum k0

‖
, and under the

assumption of negligible propagation loss the NLSE reads [S8; S10]

i
∂Ã(y, τ)
∂y

−
β2

2
∂2Ã(y, τ)
∂τ2 + γnl|Ã(y, τ)|2Ã(y, τ) = 0, (S15)

expressed in the retarded time-frame τ = t − ∂k‖
∂ω

∣∣∣
0
y with

∣∣∣
0

indicating evaluation in the low-field limit
at center frequency and momentum ω0 and k0

‖
with all complementary parameters held fixed. Here

Ã(y, τ) = A(y, t) is the y-dependent envelope function of the field amplitude E(y, t) = A(y)eik0
‖
y−iω0t.

In the 1D treatment, E(y, t) corresponds physically to the y-dependence of the x-averaged amplitude.
Finally, parameters β2 and γnl give the group velocity dispersion β2 ≡

∂2k‖
∂ω2

∣∣∣
0

and the nonlinear parameter

γnl ≡
∂k‖
∂|Ã|2

∣∣∣
0
.

Our main point here is to highlight that the coefficients β2 and γnl can be analytically expressed for moderate
field strengths in terms of eigenvalues λn(k‖), inhomogeneity parameter κ, saturation field Esat, and ribbon
setup εf and W. In particular, working in the intraband approximation where ~ω(k‖) = ~Ω

√
−λ(k‖), with

~Ω ≡ (2π)−1
√

e2εf/ε0W, allows obtention of

β2 = −
4

Ω2

(
∂λ(k‖)
∂k‖

∣∣∣∣∣
0

)−1[1
2
− λ(k0

‖
)
∂2λ(k‖)
∂k2
‖

∣∣∣∣∣
0

(
∂λ(k‖)
∂k‖

∣∣∣∣∣
0

)−2]
. (S16)
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Similarly, using dω = ∂ω
∂k‖

∣∣∣
0
dk‖ + ∂ω

∂|Ã|2

∣∣∣
0
d|Ã|2 = 0 and Eq. (5), allows expression of γnl

γnl =
∂k‖
∂|Ã|2

∣∣∣∣∣
0

= −
∂ω

∂|Ã|2

∣∣∣∣∣
0

(
∂ω

∂k‖

∣∣∣∣∣
0

)−1

where
∂ω

∂|Ã|2

∣∣∣∣∣
0

=
−9
16

κω0

E2
sat

and
∂ω

∂k‖

∣∣∣∣∣
0

=
−Ω

2[−λ(k0
‖
)]1/2

∂λ(k‖)
∂k‖

∣∣∣∣∣
0
,

=
9
8

κ

E2
sat
λ(k0

‖
)
(
∂λ(k‖)
∂k‖

∣∣∣∣∣
0

)−1

, (S17)

where we have used that 〈|E(0)|2|〉 ' |Ã|2 to linear order, and where κ denotes the inhomogeneity parameter
defined by 〈|E(0)|4〉 ≡ κ〈|E(0)|2〉2. Note that κ is also (weakly) momentum-dependent and hence evaluated at
k0
‖
; higher-order corrections ∝ ∂κ

∂k‖

∣∣∣
0

are neglected.

Crucially, for negative β2 Eq. (S15) exhibits an analytical (bright) soliton solution, with spatial phase
factor δk‖ ≡ −β2/2τ2

0 [S8]

Ã(y, τ) = Ã0sech(τ/τ0)eiδk‖y, (S18)

provided the pulse width τ0 and maximum amplitude Ã0 are interrelated by

N2 ≡
γnl|Ã0|2τ2

0

|β2|
= 1. (S19)

In Fig. S2 we plot β2Ω2 and γnlE2
sat – which are dimensionless, universal functions of the ribbon, inde-

pendent of setup parameters εf and W – as functions of k0
‖

for the first few eigenmodes of the nanoribbon
(n = 0, 1, . . ., corresponding to monopole, dipole, etc.). Apart from the monopole and dipole, the modes
exhibit simultaneously positive γnl and negative β2 in the entire or most of the considered k0

‖
-region

[restricted to small k0
‖

to ensure validity of Eq. (S15)]. Accordingly, fundamental soliton solutions, of the
type in Eq. (S18), are allowed for these modes for appropriate values of |Ã0|2τ2

0. The dipole mode exhibits
a small region of feasible soliton parameters for larger k0

‖
& 0.49.
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