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Hydrodynamic nonlocal interaction range ξNL

Table S1 provides a listing of typical values for the nonlocal interaction range ξNL = vF/ω

considered in the optical domain at a wavelength of 500 nm, computed from tabulated plasma

frequencies for various relevant plasmonic metals.

Table S1: Table of values for the plasma frequency, ωp, Fermi velocity, vF, and nonlocal interaction
range, ξNL (at a wavelength of 500 nm), for a selection of plasmonic metals.

Metal ~ωp [eV] vF [106 m/s] ξNL [Å] Reference
Li 8.05 1.29 3.4 S1
Na 6.04 1.07 2.8 S1
Al 14.94 1.95 5.2 S2
K 4.39 0.86 2.3 S1
Cu 10.83 1.58 4.2 S3
Pd 9.72 1.47 3.9 S3
Ag 9.01 1.39 3.7 S3
Pt 9.59 1.45 3.9 S3
Au 9.03 1.40 3.7 S3

Measurement coefficients

In this section, we review the particulars of theMie–Lorenz coefficient expansion of the extinction

cross-section, σext, the EELS probability, Γ, and the free-space normalized local density of states

(LDOS), ρE/ρE
0. First, we briefly remind how a given exciting field can be decomposed into

multipoles.

Multipole expansion of exciting field. With the relationship between exciting and scattered

fields established, Eq. (3), the problem of deducing the scattered field due to some exciting

field is reduced to expanding the exciting field in the multipole basis. As a consequence of the

orthogonality of the vector wave functions on the surface of a sphere, the expansion coefficients

can principally be obtained from:S4

aex
lm =

∫ 2π
0

∫ π
0 Eex ·M[1]

lm sin θ dθdφ
∫ 2π

0

∫ π
0 |M

[1]
lm|2 sin θ dθdφ

, (S1)

with F denoting the complex conjugate of F. An identical equation for bex
lm exists with M[1]

lm

replaced by N[1]
lm.
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At this point, it is worthwhile noting that the inclusion of hydrodynamics incurs no additional

analytical difficulties in the external region, compared to local theory; all results from local theory

remain valid for r > R , provided the local TM Mie–Lorenz coefficients are supplemented by

the hydrodynamic correction ∆l from Eq. (4c). As such, for measurements restricted to the

external region, hydrodynamics can be immediately included using well-established results from

local theory. In the internal region, the additional wave components due to the longitudinal

multipoles, L[1]
lm , break this convenient correspondence. In the following we consider evaluation

of the extinction cross-section, the EELS probability and the electric LDOS in the external region.

Extinction cross-section. In the case of an incident plane wave, propagating along the

z-direction and polarized along the x-direction, Eex(r) = eikDzêx , the exciting field can be

decomposed in a multipole basis with m = ±1, leading to expansion coefficients:S4

aex
lm = Elmδ|m|1 , bex

lm = Elδ|m|1, (S2)

with El = −i l+1(2l + 1)/[2l(l + 1)].

The extinction cross-section, σext, which measures the ratio of power dissipated due to both

scattering and absorption by the sphere, Wext, to the incident intensity, I0, can be obtained by

application of the optical theorem,S5 giving;

σext =
Wext

I0
=

2π
k 2
D

∞∑

l=1

(2l + 1)Re
(
t TEl + t TMl

)
. (S3)

For discussion of actual results, we prefer the dimensionless extinction efficiency Qext = σext/πR2

rather than the cross-section. Regardless of the choice of efficiency or cross-section, the

characteristics of the extinction closely mirrors those of standard experimental transmission

measurements on widely separated particle arrays.

Electron energy loss probability with aloof electron. The case of the EELS probability

for aloof electron trajectories is also approachable by expansion in the multipole basis. In

particular, an electron traveling at constant velocity v = v ẑ with t = 0 impact parameter b in the

xy-plane, emanates a cylinder-like wave from the electron trajectory re(t) = b + vt . Specifically,

if b = 0 the traveling charge density is ρ(r, t) = −eδ(r − vt) which excites an electric field

Eex(r,ω) = eω
2πε0v2γε

eiωz/v
[

i
γ
K0
(ωr‖

vγ

)
ẑ− K1

(ωr‖
vγ

)
r̂‖
]
with γ = 1/

√
1− (v/c)2 denoting the Lorentz

contraction factor.S6,S7 This incident field scatters off the metallic sphere, and the scattered field,
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working back on the electron, incurs a measurable energy loss, ∆E , for the total electron energy

∆E = e
∫ ∞

−∞
Esc[re(t), t ] · v dt . (S4)

The loss can also be expressed in terms of a frequency-decomposition through ∆E ≡∫∞
0 ~ωΓ(ω) dω, with Γ(ω) denoting the electron loss probability. The time-domain scattered field

in Eq. (S4) can be represented by its frequency-domain Fourier components, which, together

with the definition of Γ(ω) and the property E(r,ω) = E(r,−ω), allows expression of Γ(ω) in terms

of the scattered field:

Γ(ω) =
ev
π~ω

∫ ∞

−∞
ẑ · Re

{
Esc[re(t),ω]e−iωt

}
dt . (S5)

The problem of determining the appropriate multipole expansion of the exciting field due

to the traversing electron, and the subsequent integration of the induced field as required to

obtain Γ(ω) through Eq. (S5), was solved by F. J. Garcı́a de Abajo in Ref. S8 for the case of a sphere

embedded in vacuum, εD = 1, and for aloof electron trajectories, |b| = b > R . The resulting

expression is:S7,S8

Γ(ω) =
α

ω

∞∑

l=1

l∑

m=−l

K 2
m

(
ωb
vγ

)[
C TE

lmRe(t TEl ) + C TM
lmRe(t TMl )

]
, (S6)

where α = e2

~c
ε0
4π is the fine-structure constant, Km denotes the modified Bessel function of the

second kind of order m, and C TE
lm and C TM

lm are functions of l, m, and v/c given by:S7

C TE
lm =

1
l(l + 1)

|2mΠlm|2, C TM
lm =

1
l(l + 1)

∣∣∣∣
c

vγ
Ξlm

∣∣∣∣
2

, (S7a)

with

Πlm =

√
(2l + 1)
π

(l − |m|)!
(l + |m|)!

(2|m| − 1)!!
(vγ/c)|m|

C (|m|+1/2)
l−|m|

(
c
v

)
, (S7b)

Ξlm = Πl,m+1

√
(l + m + 1)(l −m) + Πl,m−1

√
(l −m + 1)(l + m), (S7c)

where C (ν)
n (x) denotes the nth Gegenbauer polynomial of order ν .S9

Lastly, we note that the relativistic kinetic energy of the electron, Ee , relates to its velocity,

v , through Ee = meγc2 −mec2, where me denotes the electron mass. Consequently, a given
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kinetic electron energy Ee corresponds to the velocity

v
c

=

√
1−

(
mec2

Ee + mec2

)2

. (S8)

Local density of states. The third and final relevant excitation field and measurement to be

considered here, is that of an electric dipole field and a measurement of the LDOS, relevant e.g.,

for the spontaneous decay of an electric dipole emitter near the sphere. The problem of dipole

radiation outside a sphere was first considered by M. Kerker et al. in Ref. S10 using the multipole

basis, in the context of surface enhanced Raman scattering (SERS). Subsequently, the problem of

decay rates of emitters near metallic and dielectric spheres was treated, relating the Mie–Lorenz

coefficients to the decay rate enhancement.S11,S12

The partial electric LDOS experienced by an emitter of transition frequency ω with its

dipole-moment oriented along the radial and tangential directions, ρE
⊥ and ρE

‖, respectively, at a

distance b > R from origo is given by:S12,S13

ρE
⊥

ρE
0

= 1 +
3
2

1
y2

∞∑

l=1

(2l + 1)l(l + 1)Re
[
t TMl h (1)

l (y)2
]
,

ρE
‖

ρE
0

= 1 +
3
4

1
y2

∞∑

l=1

(2l + 1)Re
[
t TEl ξl(y)2 + t TMl ξ

′
l (y)2

]
,

(S9)

where ρE
0 denotes the LDOS in the absence of the sphere ρE

0 = ω2/π2c3, y = kDb denotes

phase-accumulation from dipole to sphere, and finally ξl denotes the Riccati-Bessel function

ξl(y) = yh (1)
l (y) introduced for brevity of notation. The orientation-averaged LDOS, ρE, can be

obtained from the partial LDOS through summationS14,S15 ρE = 1
3ρ

E
⊥ + 2

3ρ
E
‖.

We note that the radially oriented emitter couples solely with TM-polarized fields, while

the tangentially oriented emitter couples to both TM and TE polarizations. However, for small

spheres and probe distances, y � 1, the TM contribution dominates the TE contribution as

can be verified from the 0 < x �
√

l + 1 asymptotic behavior of ξl(x) ' Nl+1x l+1 − iN−1
l x−l

and ξ′l (x) ' (l + 1)Nl+1x l + ilN−1
l x−l−1 with Nl = 2l l!/(2l)!. As a consequence, we expect strong

enhancement of either radial or tangential LDOS to arise primarily due to TMpolarized interaction.

S5



Asymptotics of LDOS and EELS - similarities with extinction

It is instructive to consider the limits in which the LDOS and EELS spectra are qualitatively similar

to the extinction spectra, in other words, to study the regimes wherein extinction measurements

gives information directly comparative to EELS or LDOS measurements on the same system. In

this section, we derive asymptotic expressions for the normalized orientation-averaged LDOS in

the large-separation range, kDb � 1, and similarly for the EELS signal in the ultra-relativistic

limit, v/c → 1. We show that these asymptotics display the same qualitative behavior as the full

extinction spectra, apart fromminor probe-related differences.

LDOS at large surface-to-probe separations. We consider the large-y limit of Eqs. (S9),

corresponding to probe-to-surface separations exceeding the wavelength in the surrounding

dielectric. From the large-argument asymptoticsS16 of the spherical Hankel and Ricatti-Bessel

functions [h (1)
l (y) ' i−l−1y−1eiy , ξl(y) ' i−l−1eiy , and ξ′l (y) ' i−leiy valid for y � 1] we find that

Eq. (S9) reduces to:

ρE
⊥

ρE
0

= 1 +
3
2

1
y4

∞∑

l=1

(2l + 1)l(l + 1)Re
[
t TMl e2iy

]
(−1)l+1, (S10a)

ρE
‖

ρE
0

= 1 +
3
4

1
y2

∞∑

l=1

(2l + 1)Re
[
(t TEl − t TMl )e2iy

]
(−1)l+1, (S10b)

which, for the orientation-averaged normalized LDOS, to lowest order in y−2, gives:

ρE

ρE
0

= 1 +
1
2

1
y2

∞∑

l=1

(2l + 1)Re
[
(t TEl − t TMl )e2iy

]
(−1)l+1, (S11)

valid for y � 1. Apart from scaling, the factor e2iy , which is due to interference of emitted and

reflected waves, and some signs, this form is qualitatively similar to the form of the extinction

spectra in (S3). In particular, the same (2l + 1) magnitude of the weighting is present. This

illustrates why just the dipolar term is significant in the large separation limit for small spheres,

where t TM1 is logarithmically dominant compared to the remaining Mie–Lorenz coefficients.

EELS signal in ultra-relativistic limit. In the v/c → 1 limit we can evaluate the Gegenbauer

polynomials at unity argument usingS17 C (ν)
n (1) = (2ν + n − 1)!/[(2ν − 1)!n!] - this value is

approached linearly or quadratically as a function of the argument, depending on the parity of n.

The limit v/c → 1 also sends γ →∞, but a sub-linear rate of divergence. As such, we evaluate
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the limit v/c → 1 in Eq. (S6), but retain γ as finite. To lowest order in γ−2 we find after some

manipulations that C TE,TM
lm ' π−1γ−2(2l + 1)δ|m|,1, leading to:

Γ(ω) =
α

ω

2
πγ2

K 2
1

(
ωb
vγ

) ∞∑

l=1

(2l + 1)Re
[
t TEl + t TMl

]
, (S12)

valid for v/c near unity, i.e., for ultra-relativistic electron velocities. Evidently, apart from the

two frequency-terms outside the sum, the spectral response is identical to that obtained for

extinction in Eq. (S3), and as such provides an identical weighting to the various multipoles.

Effectively, then, the dipole is the prominent peak due to the dominance of t TM1 relative to the

remaining Mie–Lorenz coefficients, at least for small spheres.

Finally, from the x � m asymptotic form of the modified Bessel function,S9 K 2
m(x) ' π

2x e−2x ,

it is evident that the loss probability decays approximately exponentially in the far-probe

region. Due to Lorenz contraction, the transition to the far-probe region is postponed until the

contracted distance b/γ is comparable with the electron wavenumber ω/v .

Multipolarpolarizabilityandnonretardedplasmonresonances

We can derive the nonretarded multipolar polarizability, αl , giving the response to incident

potentials of pole order l + 1, from theMie–Lorenz coefficients, by noting the interrelationshipS18

αl = lim
c/ωR→∞

[
− 4πiNl

k 2l+1
D

t TMl

]
, (S13)

with Nl = l[(2l+1)!!]2

(l+1)(2l+1) . This allows determination of the hydrodynamic multipolar polarizability,

using Eqs. (4), and yields [upon using the small-argument limiting forms of the spherical Bessel

and Hankel functions, namely jl(x) ' x l/(2l + 1)!! and h (1)
l (x) ' x l/(2l + 1)!!− i(2l− 1)!!/x l+1 valid

for x �
√

l + 1]:

αl = 4πR2l+1
l
[
εM −

(
1 + δl

)
εD

]

lεM + (l + 1)
(
1 + δl

)
εD

, (S14)

with δl = ∆l/[jl(xM)(l + 1)], see Eq. (4c). The hydrodynamic correction δl vanishes in the local

limit, such that αl appropriately reduces to the local response approximation (LRA) multipolar

polarizability αL
l = 4πR2l+1 l(εM−εD)

lεM+(l+1)εD
. The hydrodynamic multipolar polarizability was also

considered by Fuchs and Claro in Ref. S19, through their more general consideration of the

multipolar polarizability of a sphere with dielectric constant ε(k ,ω). The form of Eq. (S14),

however, is more elucidating in the direct comparison of hydrodynamic and local models.
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Notably, the above form reinforces an idea of hydrodynamics as acting to effectively modify the

neighboring dielectric surrounding,S20 rendering it weakly frequency- and l-dependent.

The nonretarded plasmon condition, Eq. (6), is obtained immediately from the poles of the

polarizability.

Mie–Lorenz transmission coefficients

In analogy with the scattering coefficients t TE,TMl discussed in Eq. (3), it is natural to introduce

transmission coefficients qTE,TM,L
l for the multipoles transmitted into the interior of the sphere:

a tr
lm = qTE

l′ a
ex
l′m′δll′δmm′ , b tr

lm = qTM
l′ bex

l′m′δll′δmm′ , c tr
lm = qL

l′b
ex
l′m′δll′δmm′ . (S15)

Note that the longitudinal multipoles, Ltr
lm, are excitable only by the ingoing TMmultipoles, Nex

lm,

but not by ingoing TE multipoles, Mex
lm – a fact that is directly tied with the invariance of the TE

scattering coefficients, t TEl , under inclusion of longitudinal waves.

Matching of the fields and currents at the boundary of the sphere yields expressions for the

transmission coefficients, here given in terms of the scattering coefficients from Eqs. (4):

qTE
l =

t TEl h (1)
l (xD) + jl(xD)

jl(xM)
, (S16a)

qTM
l =

t TMl h (1)
l (xD) + jl(xD)

jl(xM)

√
εD
εM

, (S16b)

qL
l = l(l + 1)

t TMl h (1)
l (xD) + jl(xD)

j′l (xNL)

(
εD
ε∞
− εD
εM

)
. (S16c)

Longitudinal modes and approximate bulk plasmons

In this section, we consider an approximate criterion for the existence of bulk plasmons in finite

or semi-finite metallic structures, and in particular derive Eq. (9).

In analogy with Eqs. (10), the governing equations, Eqs. (1), can be recast solely in terms of

the current density (omitting explicit declaration of frequency dependence):

(
∇2 + k 2

M

)
∇× J(r) = 0, (S17a)

(
∇2 + k 2

NL

)
∇ · J(r) = 0, (S17b)

By performing a spatial Fourier transform, and thus letting ∇ → iq, it is clear that Eq. (S17a)
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describes the transverse (divergence-free or solenoidal) part of the current, while Eq. (S17b)

describes the longitudinal (curl-free or irrotational) part of the current. In extended, infinite

structures it is well-known that plasmon resonances above the plasma-frequency are inherently

longitudinal. By extension, we introduce the assumption that bulk plasmons in finite structures

are also solely longitudinal – thus effectively neglecting interaction with transverse light, thereby

constituting the approximation in our following considerations.

To find longitudinal current density solutions, we examine the existence of solutions to

Eqs. (S17) which are curl-free (i.e., ∇ × J = 0). This condition can be satisfied by expressing

the current density via a scalar velocity potential ψ(r) through J(r) ≡ ∇ψ(r), since the curl of a

gradient is always zero. With these assumptions for J(r) Eq. (S17a) is automatically fulfilled, and

Eq. (S17b) reduces to a scalar equation for ψ(r):

(
∇2 + k 2

NL

)
∇2ψ(r) = 0. (S18)

The potential ψ(r) may be expanded in any complete, orthogonal set of functions, say {ψν(r)}∞ν=1,

such that

ψ(r) =
∑

ν

dνψν(r), (S19)

For the solution of Eqs. (S17) in a bounded domain Ω we only need to impose the additional

BC that the normal component of the current density vanishes at the boundary ∂Ω, i.e., that

n̂ · J(r) = 0 for r ∈ ∂Ω with n̂ denoting the normal unit vector to ∂Ω. By requiring that each

component of the set {ψν(r)}∞ν=1 respects this BC, we impose the homogeneous Neumann BC

that n̂ ·∇ψν(r) vanishes on the boundary ∂Ω. A particularly convenient choice for the generating

potentials can be constructed from the solutions of the Helmholtz equation,

(
∇2 + κ2

ν

)
ψν(r) = 0, (S20)

which constitute a complete, orthogonal set.

Applying the expansion in Eq. (S19), along with property of Eq. (S20), to Eq. (S18) determines

the allowed values of the nonlocal propagation constants as k 2
NL = κ2

ν . Using the definition for k 2
NL

we finally obtain the longitudinal resonance frequencies in terms of the eigenvalues, κ2
ν , of the

Neumann BC Helmholtz equation

ων(ων + iη) =
ω2

p

ε∞(ων)
+ κ2

νβ
2
F , (S21)
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which describes the dispersion of hydrodynamic longitudinal modes in an arbitrary geometry.

The problem of determining the dispersion or resonance frequencies of bulk plasmons in any

metallic structure is thus simplified to finding the eigenvalues of the Neumann BC Helmholtz

equation. A similar result was obtained in Ref. S21 for the case of a metallic sphere.

By rescaling the Helmholtz equation through x = r/R , where R denotes some geometrically

characteristic distance (such as the radius in a spherical geometry), the size-dependence of the

resonances can be discerned. Specifically, by this rescaling, the eigenvalues of the dimensionless

Helmholtz equation (∇2
x + w2

ν )ψ(x) occur at wν = κνR . Consequently, the resonance condition,

Eq. (S21), can be cast in terms of the dimensionless eigenvalues wν :

ων(ων + iη) =
ω2

p

ε∞(ων)
+

w2
νβ

2
F

R2
, (S22)

highlighting the size-dependent R2-scaling of the bulk plasmons.

For a spherical geometry, the bounded solutions of the Helmholtz equation are ψlm(x, θ,φ) =

jl(wνx)Pm
l (cos θ)eimφ as discussed also in theMethods section. Upon application of the Neumann

BC at x = 1 (corresponding to r = R), the eigenvalues are seen to be solutions of the

transcendental equation j′l (wn) = 0.

Quasistatic LDOS and R = 10 nm Drude-metal sphere

In this section we provide supporting calculations for the discussions related to Figure 8 of the

main text, for a larger sphere of R = 10 nm. For a larger sphere inclusion of additional multipoles

are required, compared to the 50 multipoles included for R = 2.5 nm, to achieve computational

convergence (since the multipole resonances are positioned more densely). For computational

purposes, it is convenient to work in the electrostatic regime for lmax > 50 to avoid numerical

instability associated with evaluation of high-order spherical Bessel functions. In this section, we

therefore briefly discuss how to derive the electrostatic limit of the electric LDOS enhancement -

an approximation which remains representative of the essential physics for anR = 10 nm sphere,

provided b/R is not too large.

The electrostatic form for the LDOS enhancement can be recovered by considering the

c/ωR ∼ λ/R →∞ asymptotics of the retarded expressions in Eqs. (S9). For this purposewenote

the small-argument asymptotic forms h (1)
l (y) ' −i(2l − 1)!!y−l−1 and ξ′l (y) ' il(2l − 1)!!y−l−1,

the connection between the TM Mie–Lorenz coefficients and the multipole polarizability in

S10



Eq. (S13), and finally that the contribution from TE components vanish in the considered limit:S22

ρE
⊥

ρE
0

= 1 +
3
2

1
k 3
D

∞∑

l=1

(l + 1)2 1
b2(l+2)

Im
(
αl

4π

)
, (S23a)

ρE
‖

ρE
0

= 1 +
3
4

1
k 3
D

∞∑

l=1

l(l + 1)
1

b2(l+2)
Im
(
αl

4π

)
, (S23b)

which, for the orientation-averaged LDOS, ρE = 1
3ρ

E
⊥ + 2

3ρ
E
‖, yields:

ρE

ρE
0

= 1 +
1
2

1
k 3
D

∞∑

l=1

(2l + 1)(l + 1)
1

b2(l+2)
Im
(
αl

4π

)
. (S23c)
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Figure S1: Logarithm of the normalized LDOS in hydrodynamic and LRA treatments, in full
blue and dashed gray, respectively, for a R = 10 nm sphere with Drude-metal composition
(ωp = 10 eV, η = 0.1 eV, and ε∞ = εD = 1). Calculated in the electrostatic approximation via
Eq. (S23c) with 250 multipoles, i.e., with lmax = 250.

In Figure S1 we depict the results of an electrostatic calculation of the LDOS for an R = 10 nm

Drude-metal sphere. The electrostatic calculation gives representative results in the considered

parameter-space, apart from a missing redshift (∼ 19 meV for the dipole resonance) due to

radiation reaction for both LRA and hydrodynamic treatments. Interestingly, the results show

S11



that hydrodynamics predicts distinct differences from the LRA not only for small spheres, but

also for larger spheres, provided the probe-to-surface separation, b − R , is sufficiently small.

The disparity arises due to the lifting of the singular pile-up of modes predicted by the LRA

near the planar-interface resonance at ωp/
√

2. As the probe approaches the surface additional

multipoles are excited, until, at the surface, all multipoles in the spectral vicinity contribute. This

suggests an alternate approach for examining the presence of nonlocal effects, even in large

structures: consider the LDOS enhancement spectrally for short probe-to-surface distances. Both

a significant broadening and a spectral shift of the peak LDOS enhancement is predicted by

hydrodynamics compared to the LRA.

Finally, for intermediate separations, b/R = 1.1 and b/R = 1.25, the existence of low-order

bulk plasmons produce a shoulder above ωp – for shorter probe-to-surface separations the

excitation of high-order multipole LSPs, existing above ωp, overshadow this effect.
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Figure S2: Extinction efficiency, EELS probability, and normalized LDOS. Setup parameters are
identical to those in Figure 7, but with radius R = 3 nm and b/R = 1.5 (corresponding to
maintaining the same probe-to-surface separation, 1.5 nm, as in Figure 7). Hydrodynamics
and LRA in full blue and dashed gray, respectively, as before. Screened plasma frequency in
dash-dotted black.

Additional spectra for larger nanospheres and for silver

To support the discussion related to Figure 7 of themain text, we here give additional calculations

for a Drude-metal and aluminum in nanospheres with R = 3 nm in Figure S2. Clearly, to observe
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the multipole features discussed in the main text the particles under consideration should be

rather small – however, even at R = 3 nm at least 3 multipole resonances are discernible for

aluminum.

Lastly, we give calculations for silver in R = 1.5 nm and R = 3 nm nanospheres in Figure S3.

For the case of silver the effects of higher-order multipoles are entirely suppressed by the

strongly dispersive background due to the bound response.
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Figure S3: Extinction efficiency, EELS probability, and normalized LDOS. Setup parameters
are identical to those in Figure S2, but for silver of two different radius. Probe-to-surface
separation is b − R = 1.5 nm in both cases. Hydrodynamics and LRA in full blue and dashed
gray, respectively, as before. Experimental data for silver taken from Ref. S3, with free-electron
parameters ωp = 9.01 eV and η = 48 meV.
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