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In this supplementary material, we describe the experimental procedures and the background
theory. In the first part, we discuss the sample preparation, and we describe the molecular FRET
pairs that are used. The instrumentation and the measurement procedure are explained. We discuss
the characterization of the optical properties of the donor molecules. We characterize the FRET
properties for the reference case (LDOS = 1), notably the Forster radius and the energy transfer
efficiency. In the second part, we theoretically investigate the relation between the Forster energy
transfer rate and the local density of states (LDOS) in a photonic medium. For media where material
dispersion is negligible in the overlap region of the donor and acceptor spectra, we find an exact
expression of the Forster transfer rate as a frequency integral over the imaginary part of the Green
function. In combination with the well-known relation between the LDOS and the imaginary part
of the Green function, this leads to an approximate expression of the Forster energy transfer rate
in terms of a frequency integral over the LDOS. We find that Forster energy transfer rates are
practically unaffected by changing the optical LDOS in a photonic medium, when keeping fixed the
subwavelength local dielectric environment of the donor-acceptor pair.

PART I: EXPERIMENTAL METHODS
Sample preparation

To control the LDOS, we used planar single mirror samples. In short (for details see Ref. [2]): First, the chromium,
silver, and silicon oxide layers were fabricated using multilayer e-gun deposition on a silicon wafer, carried out in
a Balzers BAK 600 e-gun evaporation machine. The thickness of the SiO, layer was varied to control the distance
between the mirror layer and the emitters. The thickness of the layers was determined using scanning electron
microscopy (SEM) within an estimated error of 5%. The thickness of the layers was found to be homogeneous over
the analyzed cross sections. The refractive index of SiO was determined to be n = 1.46 4+ 0.05 by white light
ellipsometry. On top of the SiO4 spacer layer, we spincoated a thin layer of polyvinyl alcohol (PVA, n = 1.50+0.01).
The PVA was 2% by weight dissolved in water and contained the DNA FRET pairs at low concentrations, 1 uM. The
estimated distance between FRET pairs is 25 nm. We spincoated the PVA layer at 6000 rpm for 10 seconds, resulting
in a homogeneous layer thickness of 17 & 3nm. The thickness of the PVA layer results in a random orientation of
the sampled emitters while at the same time it adds little distance uncertainty. Finally, a thick (>1 pm) layer of
polymethyl methacrylate (PMMA, n = 1.49 4+ 0.01) was spincoated at 2800 rpm for 10 seconds on top of the PVA
layer to avoid reflections from the PVA/air interface.

DNA FRET pair

We used the fluorescent dyes Attod88 and Attob565 as donor and acceptor, respectively. The dyes are coupled
through a DNA strand of 15 bases: Atto488 - CGA CTC CGA GTC AGC - Atto565. The unlabeled complementary
strand was used to assure the mechanical stability of the system. The HPLC and PAGE purified single-stranded DNA
was obtained from IBA Biotagnology (Germany). The double-stranded DNA was formed by mixing the labeled DNA,
the unlabeled complementary strand, and buffer (5 mM Tris, 100 mM NaCl). The mixture was heated to 80 °C for
10 minutes and then annealed by slowly cooling to room temperature.
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FIG. 1: (a) Typical decay curve measured for the FRET pair at 60 nm from a silver mirror (blue triangles), measured at
525 + 15nm. The solid black line is the single-exponential fit to the data. The grey circles correspond to the instrument
response function (IRF) of the system. The residuals are plotted at the bottom and show the good quality of the fit in the
whole decay range. (b) Typical lifetime image, showing a uniform distribution of the lifetimes. Each pixel represents the
lifetime extracted from a fit similar to the one shown in (a). (c) The lifetime histogram obtained from the lifetime image in
(b). The histogram shows a narrow Gaussian distribution indicating a good sample preparation.

Instrumentation

Time-correlated single-photon counting (TCSPC) measurements were performed using a custom-built inverted
confocal microscope. As excitation source, we used a pulsed diode laser operating at 485 nm at a repetition rate of 20
MHz (LDH-D-C-485, Picoquant). An epi-illumination configuration was used: the sample was illuminated and the
emission was collected through the same microscope objective (LUCPlanFLN 40x, 0.6 NA ;| Olympus). Remaining
excitation light in the detection path was blocked with a long pass filter (RazorEdge, 488 nm, Semrock) and an
additional single-notch filter (Stopline, 488/14 nm, Semrock). To perform time-resolved fluorescence measurements,
the emission was focused onto the active area of a single photon avalanche diode (SPCM-APQR-16, PerkinElmer),
connected to the TCSPC module (PicoHarp300, Picoquant). To limit the detection wavelength to the peak of the
FRET donor fluorophore, we used a band pass filter centered at 525 nm with a bandwidth of 15 nm (BrightLine,
525/15 nm, Semrock). The integration time per decay curve was chosen such that the total counts per decay curve
exceeded a minimum of 20000 counts to assure accurate determination of the characteristic lifetime [1].

Measurement procedure

We scanned three areas of 50 by 50 um and collected an average of 400 decay curves per area, see Figure 1. Each
decay curve was fitted with a single-exponential decay. The quality of the fit was determined by the reduced chi-
square parameter. From the determined lifetimes, we obtained one histogram per area. The distribution of lifetimes
is fitted with a Gaussian distribution. A narrow distribution compared to the most frequent lifetime indicates a good
sample quality. Small variations in the refractive index and in the thickness of the spacer layer will result in small
deviations in the measured decay rate. If these variations are too large due to bad sample preparation, the distribution
will be broad compared to the most frequent decay rate. The most frequent decay rate, i.e., the peak value of the
distribution, was used to calculate the decay rate, whereas the error for the decay rate was represented by the width
of the distribution, typically A7 = 0.09 ns. From the most frequent decay rate and width of the distribution of the
three areas, we determined the average decay rate and error.

CHARACTERIZATION OF THE DONOR ATTO488

For the analysis of the FRET efficiency, the quantum efficiency Qp and nonradiative decay rate ~,, of the donor
Att0488-DNA is needed. More details about the analysis can be found in Ref. [2].
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FIG. 2: Total decay rate of Atto488-DNA versus the normalized LDOS. The solid line represents a linear fit as expected from
Fermi’s Golden Rule. From the fit, we derived the nonradiative decay rate yn, = 0.109 # 0.029 ns™' and the radiative decay
rate Yraq = 0.261 £ 0.025 ns~ !, resulting in a quantum efficiency Qp = 70 £ 10%.

FORSTER DISTANCE AND TRANSFER EFFICIENCY OF THE ATTO488 - ATT0O565 FRET PAIR

The transfer efficiency of a FRET pair can be calculated using

1
NFRET = — ¢ (1)

6
1+ (R%)
where R is the distance between donor and acceptor and Ry is the Forster distance for the donor-acceptor pair.

The dye distributor Atto-Tec (Germany) determined the Forster distance for the Atto488-Atto565 pair as 6.3 nm.
Taking into account that our samples have a higher refractive index (1.46 compared to 1.33) and the lower donor
quantum efficiency as a consequence of the binding to DNA (70% compared to 80%), we calculated a Forster distance
of 5.8 nm. Both donor and acceptor are attached via a 6C linker to respectively the 3’ and 5’ ends of the same DNA
strand of a 15 base pairs long double-stranded DNA helix. Since 10 base pairs is a complete helical twist, the dyes
are exactly on opposite sides of the helix. Including the length of the linkers, this results in a total distance between
donor and acceptor of 6.8 nm [3] while the orientation factor x? only minimally deviates from its mean value of k% =
2/3 [4]. Using 5.8 nm for the Forster distance and 6.8 nm for the separation between donor and acceptor, the expected
energy transfer efficiency is 28%. This value agrees well with the energy transfer efficiency of 34%, which corresponds
to a Forster distance of Ry = 6.1 nm for two emitters separated by 6.8 nm, determined in our experiment.

PART II: FORSTER TRANSFER IN TERMS OF IM[G]

The main question in this section is whether changes in the optical LDOS will affect the Forster energy transfer
rate. To answer this, let us first recall how both spontaneous-emission rates and energy-transfer rates can be expressed
in terms of the Green function (or more precisely Green tensor) of a nanophotonic medium.

First, the medium-dependent spontaneous-decay rate (r, Q) of an emitter at position r with dipole moment p = uft
and transition frequency ) can be expressed in terms of the imaginary part of the Green function G(r,r,(2) of the
medium as

2
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or alternatively y(r,w, p) = (7u%Q/(heg))N(r,w, it) in terms of the dipole orientation dependent local optical density
of states (LDOS) N(r,w, f1).
Second, following Dung, Knoll, and Welsch[5] the total energy transfer rate between a donor and an acceptor



molecule embedded in a frequency-dispersive and absorbing photonic medium is given by

W= / dw o 4 (@) (@) ? op(w), (3)

where op a(w) are the free-space donor and acceptor spectra [5, 6]. All the effects of the photonic environment are
contained in the factor w(w) which can be expressed in terms of the Green function G(ra,rp,w) of the medium and
the donor/acceptor dipole moments pp o as the transfer amplitude squared

wl)? = (2) (12) 10k Glrasro) ol (@)

This expression sums up resonant and Forster energy transfer processes. The squared Forster transfer amplitude
[Wrsrerer (W)]? that dominates the energy transfer at subwavelength distances is given by

2m N
[ Wpsrarer (W) 2 = ( )(hc) luh - Gs(ra,rp,w) - pupl?, (5)

which is just as Eq. (4) but with the total Green function G replaced by its static part Gg (defined below). From the
above relations it follows that the question whether a change in the LDOS will affect the energy transfer rate becomes
a question about the properties of the Green function, which we discuss in the following.

For the energy transfer rate Eq. (3) we only need to know the Green function in the frequency interval where
the donor and acceptor spectra overlap appreciably. We will assume that absorption and material dispersion can be
neglected in this overlap region, so that £(r,w) in the overlap region can be approximated by a real-valued frequency-
independent dielectric function €(r). The corresponding Green function G(r,r’,w) is the solution of

—V x V x G(r,r',w) + &(r)(w/c)?G(r,r’,w) = d(r — ')I. (6)

This is the usual wave equation for light, with a localized source on the right-hand side. Unlike e(r), the Green
function G(r,r’,w) is frequency-dependent and complex-valued.

In order to find a relation between the energy transfer rate and the LDOS, we will express the Green function in
terms of the complete set of optical eigenmodes f) that satisfy the equation

—V X V x £y (r) + (r)(wx/c)*fr(r) = 0, (7)

with eigenfrequencies wy > 0. For later use, note that Eq. (6) implies that the imaginary part of the Green function
satisfies the same source-free equation (7) as the subset of modes f\(r) for which wy = w. Therefore, Im[G(r, ', w)]
can be completely expanded in terms of only those degenerate eigenmodes.

The mode-function expansion of the Green function consists of three terms [7],

G(r, 1, w) = 22 w+m ( ) ZfA r)f; (¢ mé(r—r’)l. (8)
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Since by Eq. (4) the Green function controls the energy transfer rate, it is useful discern energy transfer processes
corresponding to these three terms. The first term on the right-hand side of Eq. (8) will be denoted by Gr and
corresponds to resonant dipole-dipole interaction (RDDI), the radiative process by which the donor at position r
emits a photon, which is then absorbed by the acceptor at position r’. Between emission and absorption (in principle)
a photon could be detected. The name ‘resonant’ describes that photons close to resonance with the D/A energy are
the more probable energy transporters, in line with the denominator (w + in)? — w3 of this first term. The second
term in (8) will be called Gg and corresponds to the static dipole-dipole interaction (SDDI), which also causes energy
transfer from donor to acceptor, but by virtual (not necessarily resonant) photons. The SDDI gives rise to the Forster
energy transfer rate that in homogeneous media characteristically scales as [ra — rp|~% and dominates the energy
transfer for strongly subwavelength donor-acceptor separations. The third term in Eq. (4) is proportional to the Dirac
delta function §(r — '), does not contribute to energy transfer, and can be neglected in the following.

We will now use the mode expansion of the Green function to derive a new and useful expression, relating the
Forster transfer rate to an integral over Im[G]. We will use the fact that Gg(r,r’,w) is real-valued, the proof of which
is given in Ref. [8]. The proof is based on the fact that mode functions of a nondispersive nonabsorbing dielectric



medium in principle can be chosen real-valued. Thus the imaginary part of the Green function is equal to Im[Gg]
and the mode expansion of Im[G] becomes

7TC2
Im(G(r,r’,w)] = =5~ > BOE()0(w — w), (9)
A

where w > 0 is assumed. Notice that indeed only degenerate modes with frequencies wy = w show up here, in
agreement with the argument below Eq. (7), and that the mode expansion (9) is indeed a solution of Eq. (7).

Now if we multiply the right-hand side with w and then integrate over w, we obtain an expression proportional to
Gg, and we thereby find the central identity of this Supporting Material,

2 o0
Gs(ra,rp,w) = —5 dw; wy Im[G(ra, rp,wr)]. (10)
Tw? Jy

It is a general result for a photonic medium, derived using a complete set of modes and independent of the set of modes
used. When inserting this into Eq. (5) we obtain the Forster transfer amplitude wg(w) and hence also the transfer
rate W of Eq. (3) in terms of the imaginary part of the Green function, analogous to the well-known expression (2)
for the spontaneous-emission rate. There are however two differences, a major and a minor one. The major difference
between Eq. (10) for Forster energy transfer and Eq. (2) for spontaneous emission in terms of Im[G] is of course that
Eq. (10) is an integral over all possible frequencies. The difference that below will turn out to be minor is that in
Eq. (10) the Green function Im[G(ra,rp,w)] appears, with two position arguments, one for the donor and one for
the acceptor. The advantage of an expression in terms of Im[G] is that Im[G], in contrast to Re[G], does not diverge
for ro — rp. The identity (10) is important since our goal is to find the relation between the optical LDOS and the
Forster energy transfer rate. With Eq. (10), both quantities can now be expressed in terms of the imaginary part of
the Green function, which brings us close to our goal.

Let us now test the relation (10) for a homogeneous medium with £(r) = n? and r = rp — rp, for which the Green
function has the imaginary part [9]

1 =3t @t [sin(nwr/c) — (nwr/c) cos(nwr/c) l-r®T71

Im[G"™ (r,w)] = yp- (nior Jc)? - sin(nwr/c). (11)

By inserting this into Eq. (10), the frequency integral over the first part o (I — 3t ® I') gives

1 | -3r®r
(nwr/c)?  4xr

Ggom(r’ w) = ’ (12)
which is the near-field expression oc 1/(n?r3) that upon inserting into Eqgs. (3) and (5) leads to the well-known Forster
transfer rate o< 1/(n*r%). The frequency integral over the second part o< (I — # ® #) of Eq. (11) gives a delta-function
contribution that can be neglected for energy transfer. Thus it is reassuring to find for homogeneous media the
well-known Forster transfer rate using our general formula Eq. (10).

FORSTER TRANSFER AND FREQUENCY-INTEGRATED LDOS

We will now use Eq. (10) to derive an approximate expression relating the Forster transfer rate to the frequency-
integrated LDOS. To that end, note that Im[G] for homogeneous media in Eq. (11) varies appreciably only on the
wavelength scale of light (Ag = 500nm; wy = 2me/Ng), whereas Forster energy transfer occurs on a length scale of
5nm, so typically a hundred times smaller. Since Im[G] satisfies the homogeneous equation (7) and in analogy with the
property of homogeneous media, we will now assume that also in inhomogeneous media Im|[G] varies appreciably only
on the wavelength scale of light. Then for typical Forster transfer D-A distances, the zero-order Taylor approximation
inr =rp —rp that Im[G(rs,rp,w;)] can be approximated by Im[G(rp,rp,w;)] will be accurate for frequencies up
to 2 = 10wy, corresponding to a free-space wavelength as small as 50 nm. The specific value of €2 does not matter so
much, more that it can be chosen much higher than optical frequencies while still the inequality nQ|ra — rp|/c < 1
holds. Within this approximation, the Forster transfer rate can be related to the LDOS, analogous to Eq. (2) for
spontaneous-emission rates. The crucial difference is that the Forster transfer rate is given by the sum of two frequency
integrals, since

2 (Y 2 [
Gs(rA,rD,w):m/o dwy wq Im[G(I’D,I'];),wl)]—I—m/Q dwy w1 Im[G(rp, rp,w1)]. (13)



Here the first term can be recognized as an integral over the LDOS, integrated over a large frequency interval ranging
from the far infrared to far beyond optical frequencies. The validity of the approximate expression (13) improves as
the D-A distance r is reduced, since then the zero-order Taylor expansion of Im[G] in (ry —rp) is better. We can also
improve the approximation (13) by choosing €2 smaller, and it coincides with the exact relation (10) for vanishing .

We will now test the accuracy of the approximate expression (13) by taking the homogeneous medium as an example.
By inserting Im[G"*™] of Eq. (11) into the right-hand side of Eq. (13), we obtain

G () = — 11 {(I ) {1 _ 2(”97"/6)2] F—i®F) {W} } (14)
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The first thing to notice is that this differs from the exact result (12) by only a small amount, since nQr/c < 1.
Indeed we approach the exact result in the limits of vanishing r and €2, as anticipated in the general case. Thus we
find that the Forster transfer rate can be accurately expressed as a frequency integral that in the optical regime runs
over the imaginary part of Im[G(rp, rp,w)], the same Green-function quantity that determines spontaneous-emission
rates. However, the by far dominant contribution o 1/(n?r3) originates from the second, high-frequency integral
ranging from 2 to infinity, and thus has not much to do with the optical LDOS. Furthermore, this dominant term
stems from the part of Im[Ghom(rD, rp,w)] that is proportional to (I — 3t ® '), whereas the spontaneous-emission rate
only depends on the term proportional to (I — ¢ ® ).

This all adds to the conclusion for homogeneous media that Forster transfer rates are quite unaffected by
spontaneous-emission rates in the entire optical regime, even though we were able to show that both can be ex-
pressed in terms of the imaginary part of the Green function. The general arguments given above suggest that this
conclusion also holds for general inhomogeneous media, where the effect of the LDOS may be even weaker since
engineered enhancements or reductions of the optical spontaneous emission rates in photonic structures often average
against effects in other frequency intervals. Also, a large but narrow-band effect on the LDOS in the optical regime
only has a very limited effect on Férster energy transfer.

SCALING WITH D-A DISTANCE OF FORSTER TRANSFER RATE

Above we used the example of a homogeneous medium to illustrate our general results for Forster transfer in
photonic media. Here we show that the homogeneous-medium Férster transfer rate, scaling as oc 1/(nf %), is an
important limiting case also for inhomogeneous media.

Let us assume that the donor and acceptor are separated by a few nanometers distance, experiencing the same
dielectric material with a dielectric function that we call €y, within an inhomogeneous photonic environment. In
all of space, we define the optical potential V(r,w) = —[e(r) — phom](w/c)?l, so that the optical potential vanishes
in the vicinity of the donor-acceptor pair. Then the Green function of the medium can be expressed in terms of the
homogeneous-medium Green function and the optical potential as

G(rAervw) = GhOHl(rA - I‘D,CU) +/dr1 Ghom(rA - rl,W) : V(rlaw) ' G(rla I'D,W), (15)

which is the Dyson-Schwinger equation for the Green function that controls the energy transfer. The equation can
be formally solved in terms of the T-matrix of the medium as

G(ra,rp,w) = Ghom(rA —rp,w) + //drldrg Ghom(rA —r,w) - T(r1,ra,w) - Ghom(r2 —Ip,w). (16)

The important property of the T-matrix T(ry, re,w) is now that it is only non-vanishing where both V(r;) and V(r3)
are nonzero, so that it vanishes in the vicinity of the donor-acceptor pair. Thus the Green function that controls the
energy transfer is given by a homogeneous-medium Green function and a scattering term. The former is a function
of the distance between donor and acceptor, whereas the latter does not depend on the D-A distance, but rather on
the distance of donor and acceptor to points in space where the optical potential is non-vanishing.

As the D-A distance is decreased, the homogeneous-medium contribution in Eq. (16) grows rapidly, essentially
becoming equal to Ggom(rA —rp,w) of Eq. (12), whereas the contribution of the scattering term does not change
much. So in the limit of very small D-A separations, the homogeneous-medium term always wins, and one would
find the well-known Forster transfer rate of the infinite homogeneous medium oc 1/(ni_ 7%). For general photonic
media one cannot say at what separation the homogeneous-medium term starts to dominate. Smaller D-A distances
are needed before this dominance sets in if donor and acceptor are located closer to an interface with a medium with
larger refractive-index difference compared to npom. The important point is that the homogeneous-medium Forster
transfer rate is the small-distance limit also for Forster transfer in inhomogeneous media.



CONCLUSIONS OF PART II: BACKGROUND THEORY

We have studied the connection between Forster energy transfer and spontaneous-emission rates in a nondispersive
photonic medium, by expressing both rates in terms of the imaginary part of the Green function of the medium.
We find that Forster energy transfer can be expressed as a frequency integral over the imaginary part of the Green
function, and that in the optical regime and beyond, the Green function Im[G(ra,rp,w)] in the integrand can be
replaced by Im[G(rp, rp,w)], which is proportional to the optical LDOS, the same quantity that controls spontaneous-
emission rates. However, for homogeneous media we have seen that the by far dominant contribution to Forster energy
transfer is not this integral over the LDOS, but rather the high-frequency integral over Im[G(ra,rp,w)]. We argued
that the same holds true for general inhomogeneous media. We also found that the homogeneous-medium Forster
transfer rate oc 1/ (nﬁomr6) is the small-distance limit also for Forster transfer in inhomogeneous media, where nyom
is the refractive index surrounding the donor-acceptor pair. Our theoretical findings support the experimental results
of the main text, namely that Forster energy transfer rates are practically unaffected by changing the optical LDOS,
when keeping fixed the subwavelength local dielectric environment of the donor-acceptor pair.
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