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Abstract: The quantum optics of metamaterials starts with the question of whether the same effective-
medium theories apply as in classical optics. In general, the answer is negative. For active plasmonics
but also for some passive metamaterials, we show that an additional effective-medium parameter
is indispensable besides the effective index, namely, the effective noise-photon distribution. Only
with the extra parameter can one predict how well the quantumness of states of light is preserved
in the metamaterial. The fact that the effective index alone is not always sufficient and that one
additional effective parameter suffices in the quantum optics of metamaterials is both of fundamental
and practical interest. Here, from a Lagrangian description of the quantum electrodynamics of media
with both linear gain and loss, we compute the effective noise-photon distribution for quantum
light propagation in arbitrary directions in layered metamaterials, thereby detailing and generalizing
our previous work. The effective index with its direction and polarization dependence is the same
as in classical effective-medium theories. As our main result, we derive both for passive and for
active media how the value of the effective noise-photon distribution too depends on the polarization
and propagation directions of the light. Interestingly, for s-polarized light incident on passive
metamaterials, the noise-photon distribution reduces to a thermal distribution, but for p-polarized
light it does not. We illustrate the robustness of our quantum optical effective-medium theory by
accurate predictions both for power spectra and for balanced homodyne detection of output quantum
states of the metamaterial.

Keywords: loss-compensated metamaterials; effective-medium theory; quantum optics

PACS: 42.50.Ct; 42.50.Nn; 03.70.+k; 78.20.Ci; 78.67.Pt

1. Introduction

Metamaterials are known and studied for guiding and manipulating light in ways not
seen in nature [1,2]. They consist of repeated designed subwavelength unit-cell structures
that allow a description of the metamaterial in terms of effective optical parameters not
found in natural materials, with negative-index metamaterials [1,3] as the prime example.
In this Introduction, we discuss applications of metamaterials in quantum optics, and justify
the need for a quantum optical effective-medium theory.

Applications in optics of metamaterials include flat superlenses [1,4-7] and sensors [8].
Metamaterials can constitute a material basis for applications of transformation optics [9]
such as cloaking devices, which typically require graded-index media realized as graded-
effective-index media.The properties of a metamaterial derive from an average of its con-
stituting materials, which often involve both metals and dielectrics. There are different
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ways to determine the effective refractive index of a metamaterial, which is the topic of
homogenization theory [10-19].

One important class of structures for which such averaging can produce truly new
functionalities are the epsilon-near-zero (or ENZ) materials [20-24], in which light prop-
agates with extremely small phases and long effective wavelengths, as has been realized
also at visible wavelengths [25,26]. Dispersion-compensated metamaterials can also lead to
new devices [27]. Loss-compensated metamaterials constitute another class of structures
for which averaging over a unit cell can produce something truly new [4,28,29]: loss in one
constituent can be compensated by linear gain in another, so as to produce metamaterials
with lower or even vanishing effective loss. Partial loss compensation has been realized
both in plasmonic waveguides [30,31] and in metamaterials [32]. Loss compensation is
studied in the field of active plasmonics, tuneable metamaterials and Parity-Time (P7)-
symmetric metamaterials with balanced amounts of gain and loss [33—-43]. All mentioned
applications of metamaterials are within the realm of classical electromagnetism.

Quantum plasmonics concerns the study of quantum optics with plasmons [44,45]. It
is a stimulating question which of the mentioned applications of metamaterials can be trans-
ferred to quantum optics. Indeed, an increasing number of researchers is exploring how
to manipulate quantum emitters and quantum states of light using metamaterials [46-57].
Vice versa, the exploration of how quantum states of light can be used to analyze metama-
terial properties [58,59] belongs to the emerging field of quantum state spectroscopy [60].

The best known and important example of metamaterials with new functionality for
quantum emitters are the hyperbolic metamaterials. Their effective epsilon is positive in one
or two directions and negative-valued in the remaining direction(s) [46]. By taking the usual
limit of infinitely small unit cells, the iso-frequency dispersion surfaces of such anisotropic
bulk media become hyperbolic, with infinite associated local optical density of states. This
nonphysical infinity indicates that the usual idealized description of metamaterials needs
improvement for embedded quantum emitters, for example, by taking into account the
nonlocality of the metallic response [61], or the finite size of either the unit cells [62] or the
emitters [63]. Thus, quantum emitters embedded inside metamaterials provide a challenge
for the effective-medium theories [64].

Quantum optics poses another lesser known challenge to metamaterials, even when
probing metamaterials in the far field and when unit cells are much smaller than the
operating wavelength: One can peform quantum optical experiments to tell apart two
metamaterials even though they have the same shape and the same effective index [59].
In classical electrodynamics, this would be impossible, but in quantum optics this may
even be possible with normally incident light on simple layered metamaterials [59]. This is
because of quantum noise. Quantum mechanics poses a limit to the use of the common
effective-index theories.

In principle, the ‘quantumness’ of light can survive the propagation through a metama-
terial. In general, quantum states of light that propagate through absorbing or amplifying
media will be affected by quantum noise associated with the loss [65-69] and gain [70-72].
This also applies to metamaterials. This does not mean that the concept of the effective
index breaks down in quantum optics. On the contrary, in Ref. [59], we presented a quan-
tum optical effective-index theory that accurately describes passive metamaterials and the
more exotic metamaterials consisting of alternating layers both with gain. The theory also
describes the quantum noise in these metamaterials, and can be seen as a direct extension
of the usual effective-index theory.

However, for loss-compensated metamaterials, we found that the effective index
sometimes underestimates the average quantum noise picked up in a unit cell, because loss
can be compensated by gain but quantum noise due to loss cannot be compensated by
quantum noise due to gain. Thus, effective descriptions of loss-compensated metamaterials
based solely on the effective index break down in quantum optics. Nevertheless, an
accurate quantum optical effective-medium theory of loss-compensated metamaterials
is still possible, where, besides the usual effective, index an additional effective-medium
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parameter is introduced for loss-compensated metamaterials, namely, the effective noise
photon distribution [59]. These results were obtained only for normally incident light on
multilayer metamaterials.

Here, we generalize Ref. [59] in important ways by considering quantum optical
effective-medium theories for three-dimensional light propagation in layered metamateri-
als. As is well-known in classical optics, s- and p-polarized light propagate qualitatively
different in a layered medium. Analogously, we will here present surprisingly different
effective noise-photon densities for s- and p-polarized light. Only for normal incidence
will they coincide with each other and with the effective noise-photon density of the one-
dimensional theory of Ref. [59]. We also address anew the question of whether it is only the
loss-compensated metamaterials that require an additional effective-medium parameter.

During its life as a preprint [73], applications of the formalism and results as developed
in an earlier version of this paper have already been applied in several works, including
Refs. [74,75]. These concentrate on the realization of P77 -symmetric optical systems and
the propagation of quantum states of light through them.

The paper is organized as follows: In Section 2, we introduce the field quantization of
media with both gain and loss, presenting what we believe is the shortest and simplest route
from a Lagrangian to a phenomenological quantum electrodynamics based on the classical
Green function. We use these results to derive, in Section 3, an input-output relation for
planar multilayer dielectrics. In Section 4, we derive a quantum optical effective-index
theory, while another effective theory, namely, a quantum optical effective-medium theory
for both s- and p-polarized light, is introduced in Section 5. We discuss in Section 6 when
these two theories will give the same predictions. We test power spectra predicted with
both effective theories in Section 7, and, similarly, the predicted propagation of squeezed
states of light through metamaterials in Section 8. We end with a discussion and conclusions
in Section 9. Various technical details are presented in five appendices.

2. Field Quantization

With application to loss-compensated metamaterials in mind, here we derive a general
expression for the quantized electric field after non-normal propagation through a bounded
inhomogeneous dielectric medium that exhibits both loss and gain. Quantum-mechanical
theories for electromagnetic wave propagation through lossy [65-67] or amplifying [70,71]
dielectrics have been developed previously. We described media with both gain and loss in
Ref. [76], where we used path-integral quantization techniques. Here, instead, we will not
use path integrals and instead we give a simpler quantum electrodynamical description of
media with both gain and loss, which is valid for arbitrary dielectric structures, including
all non-magnetic metamaterials. The method has the advantage that there is a clear
relation between the dielectric function of the dielectric medium and the more microscopic
coupling parameters in the Lagrangian. This section results in a Macroscopic QED theory
for arbitrary inhomogeneous media with both loss and gain. Its specific application to
multilayer structures then follows in Section 3.

The quantum electrodynamics of a linearly lossy dielectric can be described by mod-
eling the medium as a reservoir of three-dimensional harmonic oscillators that interacts
with the electromagnetic field [65]. We also allow for the possibility that the medium is
linearly amplifying in some finite regions of space, with gain (Im[e(w)] = ;(w) < 0) in
one or more finite-frequency windows. Linear gain can be modeled as the coupling of the
electromagnetic field to a continuum of inverted harmonic oscillators [77,78].

We introduce our model for optical media with both gain and loss by first specifying
its Lagrangian density in real space [76]

L = Lgm+ Le + Lint, 1

where the first term Lgy has the standard form Lgy = %eoEz(x,t) — ﬁBz (x,t), de-
scribing the free electromagnetic field. There is gauge freedom to write the electric field
E = —0A /0t — V¢ and the magnetic field B = V x A in terms of the scalar and vector po-
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tentials ¢ and A. For convenience, we choose the Coulomb gauge in which the divergence
of the vector potential vanishes by definition. The second term L. in Equation (1) denotes
the internal dynamics of the linear medium, which we describe in terms of the frequency
continua of the harmonic vector field X, (x, t) as

Lo = %/Ooo dw [Xi(x, £ — wZXi,(x,t)] sgnler(x, w)]. ()

We define the polarization field of the medium as

Plxt) = [ dwg(xwXa(xt), 3)
0
and assume a linear coupling of the electromagnetic field with this field,
Lint(A,P,¢) = A(x,t) - P(x,t) + ¢V - P. 4)

The g(x, w) in Equation (3) is assumed to be a real-valued scalar coupling function of
the electromagnetic field to the spatially inhomogeneous medium. At positions and for
frequencies for which ¢1(x, w) is positive-valued, the medium is lossy and X, (x, t) is an
oscillator to which electromagnetic energy is lost, whereas if €(x, w) has a negative value,
then the medium is amplifying the electromagnetic signal. The latter is modeled with
oscillators that are called ‘inverted” because of the overall minus sign sgn[ej(x, w)] = —1in
the material Lagrangian density Equation (2). The time derivative of the scalar potential
(¢) does not appear in the Lagrangian density (1). This implies, in the first place, that
the conjugate momentum associated with the scalar potential ¢ is identically zero. Sec-
ondly, the scalar potential (by its Euler-Lagrange equation) can be expressed in terms
of other degrees of freedom by Poisson’s equation g9V = V -P. The solution is
¢(x,t) = (4meg) ™! [dAX'V'-P(x/,t)/|x — X'|. The scalar potential is thereby eliminated,
and a reduced Lagrangian is obtained where only the vector potential A, the harmonic
vector field X, and their time derivatives appear. To this end, the free electromagnetic field
part and its interaction part are rewritten as

1

. 1
Lom(A) = SeoA’(x 1) — - —

2]40
Lint(AP) = A(xt) P(xt)+

(V x A(x,1))?, (5a)

/dx’v ‘P(x, t)V'- P(x’,t)/ (5b)

87teg |x — x/|

while the material Lagrangian density (2) stays without any changes because there is no
term including the scalar potential ¢. Here, and in the following, we take the medium
to be non-magnetic, and for extensions to magnetodielectrics we refer to Ref. [76]. The
Lagrangian (1), with the vector potential A, and the continua of the polarization oper-
ator X, can be used as canonical fields with the following corresponding canonically
conjugate fields

—goE(x, 1) = &A(S(i:t) = goA(x, 1), (6a)
Qu(x,t) = JX:)S‘(L;(,t) = g(w,x)A(x, t) + sgn[er(x, )X (x, t). (6b)

Until now there is no difference with a classical description. We arrive at a quantum
theory by taking the fields to be quantum fields (operator vector fields) that satisfy non-
vanishing equal-time commutation relations with their canonically conjugate fields. Apart
from the subtlety with the sign functions in Equation (6b), which discriminate between the
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frequency intervals where there is gain and loss, this canonical quantization of the fields
can proceed in a standard fashion by demanding equal-time commutation relations

[Ai(x 1), —&E;(X, )] = ind;ot(x—x), (7a)
[Xw,i(x, t), Qw’,j (X,, t)} = ih (51']' (S(w — w’) (53 (X — X/), (7b)

while all other equal-time commutators vanish. Using the Lagrangian (1) and the expressions
for the canonical conjugate variables in Equation (6), we obtain the Hamiltonian density

Bz(x, f)
2po
b [ dewsgnler(x@)) {(Qulx ) — glw )AL D) + X (x 0}

Hixt) = ZeB(xt)+

; ®)

Maxwell’s equations can now be obtained from the Heisenberg equations of motion
for the vector potential and the transverse electric field and from the commutation relation
Equation (7),

A(x,t) = —E(xt), (9a)
eE(xt) = pyg'V xVxA(xt)—P(xt). (9b)

Using the definitions D = g(E + P for the displacement field and and H = B/, for
the magnetic field strength, Equation (9) results in D(x,t) = V x H(x,t) and B(x,t) =
-V x E(x,t), showing the consistency with Maxwell’s equations. In a similar fashion,
the Heisenberg equation of motion for the dynamical variable X, leads to the second-order
differential equation

Xew(x,t) = —wZXw(x,t) + sgnler(w)]g(x, w)E(x, t), (10)

which has the formal solution

sin wt

Xw(x,t) = (Xw(x,O) +Xw(x,0)coswt) (11)

+g(x, w)sgnler(x,w)] /0 t dt’Sinw((U;t/)E(x, ¢).

In classical electrodynamics, one would typically assume the corresponding initial
fields X, (x,0) and X, (x,0) to vanish, which is something that one should not do for
the initial quantum operators in Equation (11), if only because this would violate their
commutation relations. It is these initial-operator terms in Equation (11) that describe
quantum noise, as we shall see shortly.

To facilitate our further calculations, let us introduce the annihilation operator

dj(x,w,t) = [—iwXe, i (% t) + Quj(x,1)], (12)

1
V2hw
where j = 1,2, 3 labels the three orthogonal spatial directions. Their commutation relations
follow immediately from Equation (7),

[dj(x, w, ), (x, ', t)} = 6 0(w — )P (x — ). (13)

Now, by inverting the relations (12) and substituting the result into Equation (3),
the polarization field of the medium can be written in terms of creation and annihilation
operators as

P(x ) = € /Ow ' x(x £ — £)E(x ') + PN(x £). (14)
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Here, the time-dependent susceptibility is defined as

sin wt

x(x,t) = 6)8(;) /Ooo dw sgn[el(x,w)}gz(x,w) , (15)

w

which is a causal response function because of the step function ©(t). After Fourier
transformation, the susceptibility becomes

1 187 (x,w')s X, W
X(x,w):%/o dw g(wlz )(c%n—l[-ei((ﬁ) )} (16)

The field PN(x,t) in Equation (14) is the electric polarization noise density that is
inevitably associated with absorption and amplification inside the medium. As in the
phenomenological method of Refs. [70,71], we can separate this noise operator into positive-
and negative-frequency parts PN = PN(*) 1 PN(=) with PN(=) = [PN(+)]}, where

N(+)(X,t) _ i/ooo dew /Mﬁ(x,w)eﬂwt/ (17)

in terms of the operator fi(x,w) that has the form d;(x,w,0)@[er(x,w)]+
dl (x,w,0)@[—¢1(x, w)]. This noise operator is indeed expressed in terms of material opera-
tors at the initial time ¢t = 0, as anticipated. If we now take the time derivative of Maxwell’s
equations in Equation (9) and insert Equation (14), then we obtain the frequency-domain
wave equation for the positive-frequency part of the vector potential

2
Vx ¥ x A = SeAt) = —ipugwPN), (18)
where the electric permittivity e(x, w) = 1 + x(x, w) satisfies the Kramers-Kronig relations.
Furthermore, the noise operator PN(*) (x, w) in the wave Equation (18) plays the role of
a Langevin force associated with the quantum noise sources in the dielectric. Equation (18)
can be solved as

A (x 1) = —ipg / dw w / PxG(x, %, w) - PN (¥, w) it
V2 Jo
2 / .
- / d“’/ d \/Fmow lfigx Gx,x,w) - £, @)e ™, (19)
where G(x, X, w) is the classical causal Green function (a tensor) which is defined by
V x V x —w—zs( W) |G(x, X, w) =8 (x—x)1 (20)
C2 X, 7 7 - 3

From our Lagrangian theory, we, thus, arrive at the following more practical quantum
theory of light, also known as Macroscopic QED, for an arbitrary inhomogeneous medium
with both loss and gain: given a dielectric function &(x, w), compute the classical Green
function (20) and use this to determine the vector potential (19). With Equation (6a) and
Maxwell’s equations, all other electromagnetic field operators can then also be determined.
This macroscopic QED formalism agrees with the one used in Ref. [79] and has broad
applicability. For example, it could be used to generalize multi-emitter nanophotonics
theories [80-82] to situations where background media can have loss but also gain. Here,
instead, we will use it to derive quantum effective-medium theories for metamaterials.

3. Input-Output Operator Relations for Planar Dielectrics

Let us now specify that the dielectric medium with loss and/or gain is a planar
dielectric for which the dielectric function &(x, w) varies in a step-wise fashion in the z
direction, as depicted in Figure 1. The main goal of this paper is to propose and test
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effective-medium theories in quantum optics. The test consists of a comparison between
an exact formalism for quantum optics in multilayer media on the one hand, and effective
descriptions for planar metamaterials as “effectively homogeneous” on the other. Van
der Waals heterostructures with weak electronic interlayer interactions are examples of
planar nanomaterials that can be described using transfer-matrix methods and to which
our multilayer formalism applies [83,84]. Here, we derive the exact multilayer formalism,
which we compare with the effective description in Section 4.

We look for a quantum optical input-output relation that can describe the action of
a lossy and/or linearly amplifying multilayer medium on an arbitrary quantum state of
light incoming from an arbitrary direction with either s- or p-polarization, see Figure 1.
This will be a gain-and-loss-in-3D generalization of the 1D formalism by Gruner et al., who
studied the QED only of lossy planar dielectrics [67]. The incoming light constitutes an
external light source, while quantum noise photons originating from lossy and especially
from the amplifying layers are an internal source of light. The combination of both sources
determines the quantum state of light that leaves the metamaterial. The sought input-
output relation will reflect this.

®
a;’ (z,k,®
i
....

al (z,.k,»)

a+

Figure 1. (Color online) Sketch of the planar dielectric medium with permittivity ¢;(w) and thick-
ness d; of the jth layer. The arrows denote incoming and outgoing fields. Additionally shown
are the corresponding annihilation operators used in the definitions of the electric-field operator
Equation (22).

We will derive the input—output relations by studying how the expressions for the
electric-field operator at different spatial positions are related. As is convenient for multi-
layer media, we introduce the transverse spatial Fourier transform in the two directions of
translational invariance. The electric-field operator in layer j becomes

B0 = (s [ €k [ w00 ko) + e ey

(271)

where k is a two-dimensional vector in the x, y-subspace and p = (x,y). Here, the two-
dimensional Fourier components of the electric-field operator are

BNk w) = ¥ [E) (2l w)els (+E) (2 k w)el k)],

o=s,p

associated with light propagation both to the right (+) and left (—). We write these in
terms of amplitude operators as

) : [T AV
() _ W j Fifiz ()
E;li(z kw) = ,B]-c” 260 e ay . (z,k w). (22)
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Since the properties of the amplitude operators a((fj, )i (z,k, w) are still unspecified, at this
point we only have given definitions. This changes by invoking the central result from the
previous section, namely, that all Maxwell field operators, including the electric field, can
be described in terms of the classical Green function. It comes in handy that we already
derived the Green function of a multilayer medium with both lossy and amplifying layers
in Ref. [76], as a generalization of the result by Tomas for lossy dielectric multilayers [85]. In
Appendix A, we give the (lengthy) explicit expression for the Green function, and discuss
some subtle issues that arise for amplifying layers only.

Based on the explicit expression for the Green function, we show in Appendix B
that in every separate layer the associated amplitude operators are bosonic operators that
satisfy Langevin equations. Appendix B also contains the commutation relations of these
amplitude operators. These properties characterize the amplitude operators in every layer
separately. We note in passing that for frequencies w far from the resonances of the medium,
an ordinary normal-mode expansion for the electric-field operator is recovered: when gain
and loss may be disregarded, i.e., in the limit 8Lj(a)) — 0, the operators a((,]/ )i(z, k, w)
become mode operators independent of z.

Knowing the amplitude operators in every layer separately is not enough, though.
We can only find input-output relations by identifying relations between the amplitude
operators in the various layers, and combining these to relate operators on opposite ends
of the multilayer. In Appendix C, we derive this recursive procedure in three steps: first,
within each layer j, we relate the amplitude operators on the extreme left and right to
each other, i.e., at the positions z = zj 1 and atz = zj. Second, we relate the operators in
neighboring layers across an interface, again based on the knowledge of the multilayer
Green function. In the third step, by making repeated use of the previous two steps, we
can relate the amplitude operators afjl (z,k,w) and aﬁ,ﬂ“) (z,k, w) for the outgoing fields
to the left and right of the multilayer, respectively, to the operators of the corresponding
incoming fields, a((flfl(z, k,w) and a((f{\]_H)
c((fj)i (z,k, w) of each layer, as defined in Equation (A11). The sought input-output relation
for amplitude operators is, thereby, obtained as

o (z1) o) (z1) Ey
)

AN (zy) N (2

(z,k,w), and to the noise amplitude operators

a Fo+

where we suppressed the (k, w)-dependence, and where the quantum noise originating
from all layers with either loss or gain is given by

2 (N)
Fors (2) e [ ot
=D} + -+ Dy , (24)
Fo+ C((TZ)_ C(N_)
in which the coefficient matrices T, and D, are given by
—A 1
T, — A71 021 >, 25
7 o2 ( Aci1 Aoy —Agip Apo1 Apin (25a)
‘ _gW) _gW)
pY) — Ai;z ( , 021 , . 022 . . (25b)
7 7 Iﬂ%f,]fl Az — Ag1o Bg; 153,(7]1)2 A2 — Ag1n IB%f,Jz)z
Here, the matrices ]B%((Tj ) satisfy the recursion relations Egk_l) = IB%((Tk) . R((fk) . S‘(Tk_l) and

IB%((TN) = St(TN) ,withk=23,4,...,N,and A, = Bt(fz) . R((Tz) . S((Tl ). The multiple transmissions
and reflections of the incident light in the multilayer medium are described by the same
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transfer matrices T, as in classical optics. By contrast, the matrix elements ID)l(TJ ) have no
classical analogues, since they describe the propagation of quantum noise that originates
from layer j.

The general input—output relation (23) for obliquely incident light on multilayer
metamaterials with gain and loss reduces to the one that we used in our Ref. [59] for normal
incidence (k = 0). For purely passive multilayers, the latter input—output relation, in turn,
reduces to the one in Ref. [67].

It is useful to know the commutation relations of the input and output operators.
We consider the input operators first. Using the relations (A9) and the commutation
relation (A8), we find that the input operators satisfy the commutation relations

{agl (z, k,w),a‘gl,l):(zl,k/, W] = Qi(fll e P17 Isgn[e; 1 (w)] 6,006 (w — w')6(k — K'), (26a)

and an analogous relation holds for the operators in the other outer layer labeled N + 1 on
the opposite size of the metamaterial, see Figure 1. It also follows that input operators of
different outer layers commute,

[0 (2.1, @), a0V (2 K, =0, (26b)

’

as expected for these independent input channels. We will not spell out the analogous

commutation relations for the output amplitude operators a((Tlr)f (z,k,w) and a((fll\fl) (z,k,w),
but they can be derived by applying the input—output relation (23) and the commutation
relation (26a).

Indeed, the input-output relation (23), together with the commutation relations (26a),
contain all information necessary to transform an arbitrary function of the input-field
operators into the corresponding function of the output-field operators. In particular, it
enables one to express arbitrary moments and correlations of the outgoing fields in terms

of those of the incoming fields and the quantum-noise excitations in the multilayers.

4. Quantum Optical Effective-Index (QOEI) Theory

In Section 3, the problem was solved of how the output fields of multilayer media with
both loss and gain depend on the input. This solution also holds for layered metamaterials:
periodic multilayer media with unit cells much smaller than an optical wavelength. How-
ever, for these layered metamaterials, one can hope that a simpler, effective description as
a homogeneous medium is also possible, here in quantum optics just like it is known to
be possible in classical optics. Thus, we look for the effective index as well as the effective
quantum noise of layered metamaterials.

The effective index in quantum optics is the same as in classical optics and can be
determined using the same methods. We will focus on metamaterials with strongly sub-
wavelength unit cells. This allows unique effective indices to be identified, since all methods
to obtain them give practically the same values. By thus circumventing discussions on the
level of classical effective-medium theory that can be found elsewhere, we can focus on the
new quantum optical aspects.

Classical effective-medium theories are our starting point [11-15,17,18]. We will use
and compare two established methods to determine effective indices. First, the scattering
method by Smith and co-workers [11,12,18] boils down to finding the effective index of
a homogeneous medium that mimics best the transmission and reflection off the metamate-
rial. Second, we use the dispersion method, where effective parameters are obtained from
the small-(k, w) Taylor expansion of the known dispersion relation of periodic multilayer
structures. We briefly present both methods in Appendix D.

In this section, we present a quantum optical effective-index (QOEI) theory for three-
dimensional light propagation in layered metamaterials, thereby generalizing the effective-
index theory of Ref. [59] to arbitrary propagation directions and for two polarizations.
By an effective-index theory, we mean a theory that describes the metamaterial entirely
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in terms of its effective index. In that sense, it does not differ from the usual effective
theory in classical optics. However, it differs because quantum noise is also described.
The crucial assumption of QOEI theory is that also the quantum noise of the metamaterial
can effectively be described solely in terms of its effective index. This is the simplest
quantum optical effective theory. For normal incidence, it was shown in Ref. [59] to be
accurate for the important class of passive metamaterials. That is enough motivation to
now generalize it for arbitrary angles of incidence and for both s- and p-polarizations.
However, for loss-compensated media, QOEI theory was shown to fail [59]. In Section 5,
we introduce a more generally valid effective theory for quantum optics, and in Section 6
we discuss its relation with QOEI theory.

Output Operators of a Single Homogeneous Layer.—We consider multilayer metamaterials
surrounded by free space. Assume that we have used either the scattering or the dispersion
method to determine the values for the effective dielectric tensor components for our
multilayer structure. In addition, assume that in classical optics the entire structure can
effectively be described as a single dielectric layer with effective permittivity function e .
Then we can also apply the elaborate quantum optical input-output formalism of Section 3
to that single effective layer. With the two planar interfaces of the homogenized slab located
atz; = 0 and zy = L, the input-output relation (23) for the single effective layer reduces to
the simpler form

afi)_ (21, k w) afﬁl (z1,k w) Fetto,— (k,w)
- T ff, + ’ (27)
(N+1) R N Futro + (K, @)
ay .y (zn, k) ay " (zn, K, w) effo,+ (K,

where according to Equation (25a), the matrix presentation T - is equal to

Teff, o feff o
, (28)

e—2iBoL

teff, o Teff, o

and where the effective complex reflection and transmission amplitudes of the homoge-
nized slab are given by the well-known classical expressions

. _ (B2 » — €oB5) (exp [2iBesr, o L] — 1) (29)
effr (Beft, o + €0B0)* — (Beft, e — €rB0)* exp [2iBef, s L]
4€aﬁ0ﬁeff,(7 exp [i(.Beff,a - :BO)H

t = - .
eff s (Beft, o + €0B0)* — (Beft,c — €sB0)* exp [2iBef, o L]

(29b)

Here, es = 1, €p = €eff,ps and Besr,c = y/eefr,ow?/c? — k2, in which eeg,, depends
on the angle of the incident light (for more details, see Appendix D). The effective noise
operators Fug , + in Equation (27) have no classical analogues. In Appendix E, we give the
expressions of the Fyf , 1 in terms of fundamental bosonic noise operators, which lead to
the commutation relations

) 60k — K)o (w — w'), (30a)

[Fefto, (K, @), Flgor o (K, ")) = (1= [regr,o|* — Itett,o

[Fefftr,i (k,w), Fgffg',:,: (k// w/)] == (reff,otsz,g + 32iﬁ0L7fo,gteff,n) 5010 (k — k/)(S(aJ - w/)/ (30b)

in terms of the reflection and transmission amplitudes of Equation (29). The input operators
of the effective slab satisfy the bosonic commutation relations

[u((;l(k,w), a((rl,l):(k/,w')] = [a(NH)(k,w), a(l,\’]irl)+(k’,w/)] = 6,00k —K)é(w — '), (31)

o,— [

which indeed agrees with Equation (26a) for the general multilayer in Section 3 when

(1) (N+1)

assuming the outer layers to be free space. For the output-mode operators a,~ and a, " ’,
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the commutation relations can also be obtained, by combining Equations (30) and (31) with
the input-output relations (27), giving

) (k,w), a0 T (K, )] = [N (k,w), al VT, W] = 66k — K)S(w — ). (32)
Therefore, despite the complex input-output relations, the output operators have the
same simple standard commutation relations as the input operators, thanks to the less
trivial commutation relations of the noise operators.
The quantum optical effective-index theory for planar metamaterials is hereby defined.
A more complex but also more generally valid effective theory will be presented in Section 5.
Two subsequent sections comprise test cases for both effective theories.

5. Quantum Optical Effective-Medium (QOEM) Theory

We will now derive a quantum optical effective-medium (QOEM) theory that does
give accurate predictions for thee-dimensional light propagation in loss-compensated
media. In contrast to QOEI theory, it is not an effective-index theory, because besides the
effective index, another effective parameter will be needed. Our approach is to distill solely
from a unit cell not only the usual B , but also an effective noise photon distribution
Net o (k, w, T). The theory presented here is a generalization of Ref. [59], which is valid for
normal incidence, to arbitrary angles of incidence and polarization.

Analogous to effective-index theory, we will again assume that there is an effective
noise operator in the unit cell. However, unlike in effective-index theory, we will not try
to define this operator, but rather determine the expectation value of its corresponding
number operator. Analogous to what we will find in Equation (39) for the effective-index
theory, we write the expectation value

(FI(k w)Fy (K, w'))qorm = 85076 (k — K )é(w — ')
X {Neff,(f(k/ @, T)®leuniterr1(w)] — (Negs, o (k, w, [T|) + 1)®[*€unit,eff1(w)]}

X (1 - |Runit,eff,(7 2)' (33)

2
- ‘ Tunit,eff, o

in terms of the effective noise current density Ngg, which we define shortly. The Ryt eff o
and Tyt eff, - are the (classical) reflection and transmission amplitudes of the entire unit cell.
If the factor (1 — |Runiteff, o|* — | Tunitet,o|*) is positive then it quantifies the amount of net
absorption in the unit cell, and, otherwise, the net amplification. The effective distribution
Negf, in general, is not a thermal one, in contrast to the distribution for the effective-index
theory as discussed in Equation (39) below, which features thermal distributions Ny,.

We fix (FTF)qogm of Equation (33) and, thereby, N , in three steps. First, we apply
our general input-output theory of Section 3 to a single unit cell of the metamaterial.
Second, we require that the expectation value (F tF )QoEMm coincides with the corresponding
unit-cell-averaged noise expectation value of the general multilayer theory. Third, we make
use of our assumption that the unit cell of the metamaterial is much thinner than an optical
wavelength, so we can Taylor expand the results from multilayer theory to first order in the
layer thicknesses d, }, and obtain

€11 @2 Ky (0)

(FH(k,w)Fp (K, w))qoem = Y, - 26 P Nin(@, | Ty]) 85 010 (k — K)d(w — '), (34)
j=ab

where for s-polarization the factor K; () simply equals unity while Kj,(6) = cos?6 +

sin® 6/ |¢;j|? for p-polarized light. Now we have two expressions for (F'F)qgopm, namely,

Equations (33) and (34). By equating these two, Taylor approximating also the net gain

or loss factor (1 — |Rupitefr, o> — | Tuniteft,o|?) of Equation (33) to first order in the unit
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cell thickness d = d, + d},, and solving for N ,(k, w, T), we obtain as a main result the
effective noise photon distribution

Yji—ab jo[Nim(w, T})]
Negt o (k,w, T) = —1+ Yi—ap Mje[Nm(w, |Tj|) +1] (35)
-1+3 Yj—1g Mo [2Nm(w, | Tj[) +1]

which correspond, from top to bottom, to loss-loss, gain-gain, and loss-compensated
metamaterials. This N, thus, depends on the same variables as the classical effective
parameter B¢: on the angle of incidence, on the polarization of the input state, as well as
on the dielectric parameters of the unit cell via

ICj,O’(Q)

77],(7(9) =Pj Keffv(e) (36)

gj,1(w) ’
Seffa,l(w) ’

where the p; = d;/d are the volume fractions of the layers, and the factor Kett, (6) equals
K; +(8) with ¢; replaced by e .. We allowed the two types of layers of the unit cell to
be at different temperatures. Generalizations to more than two layers per unit cell are
straightforward.

Let us first apply this QOEM theory to loss-compensated metamaterials. To gain some
intuition about the new effective parameter N ,, notice that from Equations (35) and (36)
it follows that Ng¢ grows when loss in the metamaterial is more exactly compensated
by gain (smaller . ,) or when the same value e , results from compensating more
loss by more gain (i.e., with |¢, 1(w)|) and |e, 1(w)|) both larger). This means that for
metamaterials with more effective loss compensation, it becomes increasingly important to
use Ngf , as an additional effective-medium parameter instead of Ny,. We will illustrate
this in Section 7.

Let us now show that our new QOEM theory indeed reduces to the one of Ref. [59]
in case of light propagation perpendicular to the interface, i.e., for k = 0. In that case,
the parameter K;,(6) in Equation (34) tends to unity for both polarizations. This, in turn,
implies that the parameter 7;,(6) defined in Equation (36) tends to p; ’e i1(w) /e 1(w)],
since at normal incidence the two polarizations are degenerate and €efr,s = €eff,p = Eeft-
This, indeed, agrees with Ref. [59], where we showed that for normal incidence the quantum
optical effective-medium theory gave accurate predictions for loss-compensated, loss-loss
as well as gain-gain metamaterials.

6. When Does QOEM Coincide with QOEI Theory?

Do we also need the QOEM theory for loss-loss or gain-gain metamaterials, or does
the simpler QOEI theory suffice? The QOEI theory features only one temperature for
the metamaterial. If the two layers within the unit cell are somehow kept at different
temperatures, which is not easy to realize, then we would need QOEM instead of QOEI
theory. However, if the entire unit cell is kept at the same temperature, then for light
propagation normal to the layers we found in Ref. [59] that QOEM theory reduces to the
QOEI theory, i.e., Nggs becomes equal to the thermal noise photon distribution Ny,. Is this
also true for oblique incidence?

Let us consider s-polarized light first, for loss-loss and gain-gain metamaterials at
a uniform temperature (T, = Tp,). This means, technically, that the thermal distributions
in Equation (35) can be moved in front of the summation, and the remaining summation
is Yj—qp 17j,5(8). Since in 77;5(6), as defined in Equation (36), the fractions K;5(6)/ Kegs,s(6)
are equal to unity, the sum };_,;7;s(0) becomes ¥, pjle1(w)/ecf,1(w)|, which is
angle-independent. In Ref. [59], we also pointed out that for normal incidence the sum
Yi—ap Pjlej1(w)/ eeff,1(w)| adds up to unity for loss-loss and gain-gain metamaterials
(whereas the sum is always larger than unity for loss-compensated (gain-loss) metama-
terials). Therefore, now we find that for s-polarized light, the same relations even hold
for arbitrary angles of incidence, as illustrated by the horizontal line in Figure 2a. As
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a consequence, we find that for s-polarized light incident on loss-loss or gain-gain MMs,
QOEM theory coincides with QOEI theory.

LOLf
106t

p-polarized

0.90

090} gain-gain metamaterial, p-polarized

0 0167 0.237027% 7/3 a2 0 P . o 08 10 12 14

9 ’ Wi

Figure 2. (Color online) (a) The sum £, ,1;» is shown as a function of the angle of incidence 6 for
s-polarized component of input light impinging on the loss-loss (dotted red line) and the gain-gain
(dash-dotted blue line) multilayers, and p-polarized component of input light incident on the loss-loss
(solid black line) and the gain-gain (solid green line) multilayers. (b) The sum %,;_,;7; , is shown
as a function of the angle of incidence 6 and of the dimensionless frequency w/wy for p-polarized
component of input light impinging on a gain-gain multilayer. The multilayer metamaterial with
geometry of Figure 6 has alternating layers with equal thickness d,},wy/c = 0.1, with dielectric
parameters in Equation (40): wp, /wp = 0.3, wp, /wp = 0.1 and 7,1,/ wo = 0.1. In panel (a), we choose
w/wg=09.

How about p-polarized light then, does N, also reduce to the thermal distribution for
loss-loss and gain-gain metamaterials? For MMs kept at a uniform temperature, the thermal
factor in the summation of Equation (35) can again be put in front, so that the summation
reduces to Y, , 17j,, (). However, for p-polarized light, the fractions KC; ,(0) / K, (6) do
not give unity, and, hence, the sum };_, ;7 ,(0) in general does not add up to unity. As
a consequence, for p-polarized light incident on loss-loss or gain-gain multilayers, the Neg
of Equation (35), in general, does not reduce to the thermal distribution, and, consequently,
QOEM theory does not coincide with QOEI theory.

We were especially surprised to find that QOEM theory does not coincide exactly with
QOEI theory for all passive metamaterials. In Figure 2, we study numerically how much
the two theories differ. The closer the sum }; 77, comes to unity, the closer QOEM theory
comes to the QOEI theory. This sum is thus a measure for the “distance” between the two
theories, and it depends on the dielectric parameters of the unit cell. The angle dependence
of this sum is illustrated in Figure 2a. The deviations of N from a thermal distribution
are within ten percent for the specific dielectric parameters chosen. Ng¢ becomes larger
(smaller) than the thermal distribution Ny, for angles of incidence smaller (larger) than
0.277 for the loss-loss metamaterial, and for the gain-gain MM the critical angle occurs
at 0.237t.

It also depends on frequency how well QOEM theory can be approximated by QOEI
theory. In Figure 2b, we depict the sum %;7; , as a function of both the angle of incidence 6
and of the dimensionless frequency w/wy, for the same gain-gain MM as in Figure 2a. Here,
the sum ), 77; , has a maximal deviation from unity of around 15 percent. We find similar
non-negligible frequency and angle dependence (not shown) for the loss-loss multilayer of
Figure 2a.

After these theoretical comparisons of the two effective-medium theories, in the
following sections we will test their accuracies in predicting two experimentally measur-
able quantities.

7. First Test: Power Spectra

As a first test and comparison of the QOEI and QOEM theories with the exact multi-
layer theory, we will now study the output intensities of light due to spontaneously emitted
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photons. If atoms that make up the metamaterial are excited, either thermally or because
of external pumping, then they can decay spontaneously. This is a known noise source
in lasers, which is typically overlooked for metamaterials. There is a variety of different
quantum definitions of the power spectrum in the literature [86]. Here, we choose the
quantum generalization of the classical definition of the energy spectrum for the case of
a stationary field [86]. Just like its classical counterpart, it is directly related to observables
in light detection experiments. For sufficiently small pass-band widths of the spectral
apparatus, the power spectrum . (x, w) of the light emitted on the right-hand side of our
multilayer metamaterial of Figure 1 is given by

T/2 o
7 () = lim % / /_m drdt’ et ENFD=(x 1) CEN+DT (1)), (37)
where w is the operating frequency of the spectral apparatus, and T is the duration for which
the detector is switched on. We insert the electric-field operators EN*1(¥) of Equation (22).

In general, the power spectrum depends both on the incoming optical fields and on
the quantum noise in the medium. Our goal is here to find out how well quantum optical
effective-medium theories describe the amount of quantum noise photons that contribute to
photon-counting measurements. In this section, we will, therefore, study output intensities
in the absence of any optical input signal, in other words, all optical incoming fields are
assumed to be in the vacuum state |0). In that case, all output photons are spontaneously
emitted noise photons, or . (x, w) is equal to

/2
ySpon(w) = 2/0 do ySpon,(r(Gz w) (38)
I

hw?

- @y / dk By ' (E} (K, w) Fr 4 (k, ).

8m2eqc?

Clearly, the power spectrum of the spontaneously emitted light depends on the
quantum noise through the expectation value of (F} | (k,w) Fy 1 (k,w)).

In the following, we will mostly consider power spectra at zero temperature. Ab-
sorbing layers do not emit thermal photons in that case, but amplifying layers have pop-
ulation inversion and their excited-state population can decay spontaneously. In our
numerical examples, we will look at the polarization- and angle-dependent power spec-
trum Sspon ¢ (6, w) that was defined in terms of (F , (k,w) F, , (k/,w’)) in Equation (38),
and where we assumed that only propagating modes reach the detector and, thus, restricted
the Fourier integral to modes with |k| > w/c.

What corresponding power spectrum does the QOEI theory of Section 4 predict? From
the definitions (A18a) together with the commutation relation (30), the flux in noise photons
emitted by the multilayer slab at a finite temperature T can, within the effective-index
theory, be expressed in terms of the effective reflection and transmission amplitudes as

(Flito 1 (k) Fogror 2 (K, ")) qoB1 =
{Nin(w, T)O[eess,1(w)] — (N (w, |T[) +1) O —eeg, 1(w)] }
X(l - |reff,(7 2)500’5(1(*1(/)5(“] 7(*7/)' 39)

2 |teff,a

Here, kp is the Boltzmann constant and T is the temperature, and Ny, = 1/ (exp[hiw/kgT]
—1) is the thermal distribution of photon states at energy fiw. Notice that this flux in
noise photons in Equation (39) is always a non-negative quantity (as it should be): for
media that are effectively absorbing at frequency w, the e (w) is positive and so is
(1 = |rest,o|* — |ter, o|?), while for effectively amplifying media, both these quantities are
negative. The QOEI power spectrum of the spontaneously emitted light (38) is now ob-
tained by substituting Equations (39) and (29) into Equation (38).
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To be specific, unless stated explicitly, below, in our numerical examples, we will
assume the temperature to be zero Kelvin. Furthermore, we will assume that lossy and
amplifying layers can be described by Lorentzian dielectric functions. A medium consisting
of two-level atoms with a population Nyp in the upper level and Nggyn, in the lower level can
near its resonance frequency wy be described by an electric permittivity of the Lorentzian
form [70]

(40)

2

) =1+ (2m )

down T Nup / wf — w? —iyw

where wp is the coupling frequency, wy is the transverse resonance frequency, and 7 is

the dissipation and amplification parameters for lossy and amplifying layers, respectively.

The population factor that occurs in the dielectric function (40) is positive for passive

systems, Ngown > Nup, but negative for optical gain that arises from population inversion

in the medium, Nyp > Ngown- In addition, this factor can be written in terms of the

thermal distribution Ny, as 2Ny, (w, T) + 1] ! for lossy and as [~2Ng,(w, |T|) — 1]~ for
amplifying layers.

7.1. Power Spectra of Loss-Compensated MM

In Figure 3, we explore regions with net loss and net gain and the frequencies of exact
loss compensation that separate them, and study the corresponding flux of noise photons
and the effective noise photon distribution, all corresponding to an output angle of 30°.
Left panels depict s- and right panels p-polarization. In Figure 4, we show the analogous
results for an emission angle of 60°. (Some panels of the two figures will be explained
below in Section 5).

Exact loss compensation occurs when the imaginary part of the normal-wave vector
components Begs vanishes. We show B¢ in panels (a) and (d) of Figures 3 and 4, which also
confirm that the two methods to retrieve effective parameters lead to nearly identical results.

For s-polarization, it follows from Equation (A17) that exact loss compensation occurs
at angle-independent frequencies. A comparison of the panels (a) of Figures 3 and 4 illus-
trates this, where, for the parameters chosen, exact loss compensation occurs at 0.766wg and
1.305wy, net loss in the frequency range 0.766 < w/wqy < 1.305 and net gain at elsewhere.

By contrast, for p-polarized light, exact loss compensation does depend on the angle
of incidence, as again follows from Equation (A17) and as illustrated in Figures 3 and 4:
in Figure 3d, exact loss compensation occurs (only) at w = 0.928424wy, with net gain at
smaller and net loss at higher frequencies. At sixty degrees, Figure 4d shows exact loss
compensation at a slightly higher frequency.

In panels (b) for s-polarization and (e) for p-polarization, power spectra are displayed
for spontaneously emitted light that exits the metamaterial at an angle of 30° (Figure 3)
and 60° (Figure 4). Note that these angular power spectra are continuous also across
frequencies of exact loss compensation, whereas the effective noise photon densities Neg
actually diverge at these specific frequencies, see panels (c) and (f).

For lossy homogeneous media at zero temperature, the flux of thermal noise photons
vanishes, so the power spectrum of the outgoing noise photons vanishes. Effective-index
theory predicts something else, namely, that no photons are emitted by effectively lossy
loss-compensated metamaterials. This prediction is illustrated in panels (b) and (e) of
Figures 3 and 4, especially around wy for outgoing s-polarized light, and above 0.928424cw
for outgoing p-polarized light. By contrast, the full gain-loss multilayer calculation does
predict the emission of noise photons at zero temperature, as the figures show. Thus,
effective-index theory clearly fails for effectively lossy loss-compensated metamaterials.
At exact loss compensation (e.f 1 = 0), by Equation (39), the effective-index theory predicts
that the flux of noise photons vanishes, which the figures show is another failure of the
effective-index theory.

For effectively amplifying loss-compensated metamaterials, effective-index theory
does predict a finite flux of spontaneously emitted photons which grows with the effective
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gain, as is best visible in Figure 4d, where, for frequencies slightly below 0.97w, much loss
is slightly overcompensated by much gain. Again, the effective-index theory is clearly far
from accurate. Hence, for loss-compensated metamaterials at zero temperature, we find
a clear failure of the quantum optical effective-index theory to predict an accurate power
spectrum for loss-compensated metamaterials. A new effective theory is needed that also
accurately describes the amount of noise photons in metamaterials.
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Figure 3. The power spectrum (A20) of the spontaneous emission of noise photons exiting a loss-
compensated multilayer metamaterial at an angle of 30 degrees away from the normal, in units
of S = hwg /4megc®, due to spontaneous emission of noise photons within the loss-compensated
multilayer metamaterial is sketched in Figure 6, at zero temperature. Left and right panels correspond
to s- and p-polarized light, respectively. The amplifying and absorbing layers are described by the
Lorentz model (Equation (40)), with parameters wp, /wy = 0.3, va/wg = 0.1 for the lossy layers,
and wyp, /wo = 0.25, 1,/ wy = 0.15 for the layers with gain. We choose d,,wp/c = 0.1 and five

unit cells. The parts (a,d) show the imaginary part of the normal wave-vector component Beg. In
panels (b,e), the power spectrum of the noise photons predicted with the effective-index theories is

compared to the exact multilayer calculation and the QOEM theory. For the effective-index theories,
red dotted curves are obtained by inserting effective parameters based on Equation (A15a) into

Equation (A20); the green dash-dotted lines correspond to the other procedure Equation (A17) to

obtain effective parameters. Similarly, for QOEM theory (discussed in Section 5), the magenta dashed

lines are produced with Equation (A15a), and the yellow dash-dotted curves with Equation (A17).
Panels (c,f) show the effective noise current densities Ny¢ of Equation (35), in solid red lines as

obtained using the effective index of Equation (A15a) and in dash-dotted blue curves as produced

with the other procedure (Equation (A17)) to obtain the effective index.
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Figure 4. As in Figure 3 but now for light emission at an angle of 60 degrees with respect to the normal.

7.2. Power Spectra for Loss-Loss and Gain-Gain MM

In Figure 5, we compare power spectra for p-polarized light exiting at an angle of
60 degrees away from the normal of the MM, computed with the exact multilayer theory,
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with QOEM theory, and with the quantum optical effective-index theory. The left panels are
for loss-loss MM, the right panels for gain-gain MMs, upper panels for zero temperature
and lower panels for elevated temperature. In panel (a) for the loss-loss multilayer at
zero temperature, quantum noise can be neglected; therefore, just like in classical optics,
the power spectrum of output light vanishes identically and perfect agreement between
all curves is observed. By contrast, for the gain-gain multilayer at zero temperature in
panel Figure 5b, the population of the two-level medium is fully inverted and the effects
of quantum noise in the output cannot be neglected. The power spectrum of output light
appears as a peak near wy, which is associated with the resonance frequency of the dielectric
functions of each layer. Away from resonance, both effective theories agree well with the
exact calculation. Near resonance, there are differences on the order of a few percent
between the exact multilayer calculation and the two effective-medium theories. As seen in
the zoomed inset in Figure 5b, near the resonance, the QOEM theory is more accurate than
the QOEI theory.

In panels Figure 5c for loss-loss MMs at a pretty high temperature and Figure 5d for
gain-gain MMs at a negative temperature, the exact and the two effective power spectra
again agree quite well, with only on resonance a few percent difference. Sufficiently
far from the resonance when absorption is small, the thermal noise becomes negligibly
small and the power spectrum of output noise photons is approximately zero. For the
gain-gain multilayer, the amplitude of the peak in panel (d) is smaller than the one in (b),
since amplification within gain layers is reduced by saturation effects. We checked (but
do not show it here) that these results do not depend much on the typical parameters
used in Figure 5. The overall message of Figure 5 is that both the QOEM theory and the
quantum optical effective-index theory are quite accurate in describing power spectra of
p-polarized light of loss-loss and gain-gain metamaterials, with the two effective theories
almost equally accurate. Therefore, one can use either Nyg or Ny, as the noise photon
distribution in Equation (39).

To summarize our findings from this section, we compared for the first time the
power spectra of metamaterials based on exact theory and on QOEM and effective-index
theory. For loss-compensated metamaterials we find that the effective-index theory is
manifestly inadequate, both for s- and p-polarized light. By contrast, our QOEM theory
in a consistent way predicts that the quantum noise contribution (F!(k,w)F, (K, w’))
to the power spectrum of a layered metamaterial is given by Equation (39), but with
the thermal distribution Ny, (w, |T|) replaced by the effective distribution N (k, w, T)
of Equation (35). In the absence of loss compensation, i.e., for loss-loss and gain-gain
metamaterials, we found that for s-polarized light the QOEM theory exactly coincides
with the QOEI theory. For p-polarization, there is no such exact agreement in the absence
of loss compensation, but numerically the differences between both effective theories are
so small that it is essentially a matter of choice which one to use. For loss-compensated
metamaterials, QOEM theory is the only accurate effective-medium theory.
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Figure 5. The spontaneous-emission power spectrum of the noise photons (A20), in units of % =
hwd /4megc3, for p-polarized light exiting the MM at 60 degrees away from the normal direction.
In all four panels, the QOEM theory and the quantum optical effective-index theory are compared
to the exact multilayer calculation. For the exact multilayer calculation (solid blue curves), the loss
and gain layers are described by Lorentz models (Equation (40)) with the same parameters as in
Figure 2. Left and right panels correspond to loss-loss and gain-gain metamaterials with the geometry
of Figure 6. The loss-loss and the gain-gain multilayers are maintained at zero temperature in
panels (a,b), and at the elevated positive temperature T = 0.6fiwg / kg in panel (c), and at the elevated
negative temperature | T| = 0.6hiwg /kp in (d). For the effective-index theories, red dotted and green
dash-dotted curves present the numerical parameters as obtained from the scattering method (A15a)
and the dispersion method (A17), respectively. For QOEM theory, magenta dashed and yellow
dash-dotted lines correspond to these same classical effective parameter retrieval methods (A15a)
and (A17). These effective parameters so obtained are also used to compute Ng.

8. Second Test: Propagation of Squeezed States

For the power spectra emitted by a metamaterial as discussed in Section 7, the input
states of light were vacuum states, which have a classical analogue (no light). By contrast,
here we analyze how well the difference effective-medium theories describe the output
quantum states of light when the input states have no classical analogues. This will serve as
a useful independent test of the accuracy of the effective-medium theories. We will study
the propagation of squeezed states of light through the metamaterial, generalizing Ref. [59]
to arbitrary angles of incidence. The main question is how well quantum properties of
the incoming state are preserved in the output, given that there is quantum noise in the
metamaterial. We compare the answers to this question as obtained by exact multilayer
theory and by quantum effective-index and effective medium theories. Most importantly,
we investigate whether the QOEM theory that so accurately described power spectra in
Section 7 also describes the propagation of squeezed states well.

We will consider the same metamaterial for which we calculated power spectra before,
as detailed in Figure 6. Since the tangential component k is preserved under propagation
through the multilayer and since there is air on both sides of the metamaterial, the out-
put state of light will emerge from the loss-compensated multilayer at the same angle 6.
Squeezing, specifically quadrature squeezing, occurs when the variance in the quantum
fluctuations in one of the quadrature components of the electromagnetic field drop below
the vacuum level. Squeezed states have no classical analogues and their nonclassicality
can be quantified by their associated normally ordered variances of the field operators [87].
Squeezed light can be produced by transmitting the radiation field through a nonlinear
medium with a second-order nonlinearity x(2). Mathematically, the squeezed incident
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quantum states of light can be written as |L) = S;|0) and |R) = S/|0), with squeeze
operators belonging to a fixed in-plane wavevector k given by

A .

Sy = exp{ ; ! dw [E5(k, w)e 9z (ow) g(g):(k, w) a((fll): (k,20 — w) — h.c] }, (41a)
A .

S = exp{ i Y daw [k, w)e 0z 10) NT () N (4 20 — ) — hie] } (41b)

Here, the a((flrlr (k,w) and a((,],\]jl) (k, w) are the photonic annihilation operators of the

incident fields with polarization ¢ and the transverse wave vector k on the left- and right-
hand sides of the multilayer slabs, respectively. It can be seen that the squeeze operators (41)
correlate pairs of fixed-frequency modes on both sides of the frequency (). The amount of
squeezing is controlled by the squeeze parameters ¢, (k, w) and (¢ (k, w), which depend on
the frequency, polarization, and angle of incidence. We specify the detector to be a balanced
homodyne detector. It is well-known that squeezing can be measured in such a setup,
where the signal field and a strong local oscillator are superimposed on a beam splitter, see
Ref. [88] and the sketch in Figure 6. The measured quantity is the difference in the photo
currents of two detectors placed in the output arms of the beam splitter, as represented by
the operator [87,89]

A, [totTo N+1)+ N+1
O =1 [ A a0 — ot oal V), @)
0

where on the right-hand side we suppressed the (k, t)-dependence of operators for read-
ability. The detector is assumed to be polarization selective, and it is switched on from
time #( to to + Tp. The a,,10(t) and a:;’ Lo are the creation and annihilation operators of
the local-oscillator field with polarization ¢. This local-oscillator field is assumed to be
a single-mode coherent light beam represented by the complex amplitude a, 1 o(f) that
equals Fﬁ(/)z exp[—i(wrot — ¢r10)], in terms of a flux F o, a phase ¢, 1 0, and the frequency
wro. With the usual assumption that the local-oscillator field is much more intense than
the signal field, the measurement operator O, of Equation (42) can be written as

A~ 1/2 to+To
O =R [ dtEolguno k), )

where the operator E, (¢ 0, k, t) that equals ag{\]fl) (k, t) expli(wrot — poro — 71/2)] +h.cis

one quadrature operator of the output field with wave vector k and polarization o that exits
the loss-compensated metamaterial on the right in Figure 6. Balanced homodyne detection
allows to measure a single quadrature component of the scattered field [88]. From the above
definitions, the variance in the difference photocount in a narrow-bandwidth homodyne
detector can be obtained as [89,90]

([AEa($poro e wio)]) = 1+2(a 7 (k wio),alN ™ (& wio)) (44)

N+1)t N+1)t .
+2Re[<al(,’++) (k/wLO)/at(r,-:) (k, wi o))e?9e10],

where the short-hand notation (C, D) = (CD) — (C)(D) has been introduced for a correla-
tion. The scattered output state is squeezed if its photocount variance is smaller than that
of the vacuum state value [87]. The homodyne electric-field operator has a variance (44)
equal to unity for the vacuum state. Therefore, the amount of squeezing is gauged by the
difference between this variance and unity. We will now calculate the quadrature variances
in Equation (44) in three ways: using the exact multilayer theory, the effective-index theory,
and by the QOEM theory. In all three cases, we make use of the commutation relation
Equations (13) and the definition of the squeezing parameters (41). We start calculating
the variances, Equation (44), with the multilayer theory, where the crucial relation between
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input and output operators is given by (23). This will result in rather long expressions,
which is one of the reasons to try to find simple but accurate effective theories also in
quantum optics. The two types of correlations in the variance in Equation (44) are given by
@MV (6 w),al T (K, ") = (B 4 (k) Fr, 4 (K, @) + 6500 (k — K)é(w — ') (45a)
% (ITo 22 (k@) [2 sinh? & (k, @) + [T (k, @) [ sinh? £, (K, @) )

(@ (@), sl ) = %%/5(1( CK)5(w + o' —20) (45b)

x (Tj;gz(k, ) sinh 28, (k, w)e 92 %@) L T*2 (K, ) sinh zgg(w)e*i%/c(krw)).

The homodyne signal depends on the noise as described by the operator F,, 1 (k, w),
which represents the outgoing rightward-propagating noise field produced inside the
multilayer medium. More specifically, the noise dependence is described by the expectation
value (F} , (k,w) Fy, 1 (K/,w')), which is the same noise-photon flux that we also came
across in the power spectrum (38). Thus, the effect of the quantum noise on the squeez-
ing properties of output light can be fully characterized by the emitted noise photons.
The reason why only the first of the two expressions in Equation (45) depends on the
quantum noise is that the quantum noise is assumed to be in a thermal state for which
(Ff ,(k,w)F} (K, ') vanishes.

|L) d=d,+d,

Figure 6. (Color online) Scheme of the loss-compensated multilayer medium in air. It has alternating
layers with thicknesses d, ;, that are arranged symmetrically. The two outermost layers have widths
da /2, which makes the medium finite periodic with M unit cells. The amplifying and absorbing layers
are described by the Lorentz model (Equation (40)), with parameters wp, /wg = 0.3, va/wg = 0.1 for
the lossy layers, and wp, /wg = 0.25, 1,/ wp = 0.15 for the layers with gain. We choose d,,cp/c = 0.1
and M = 5. The incident squeezed vacuum state |L) has the squeeze strength {, = 0.2 and phase
$oz = 2¢010 — %, while the squeezed vacuum state |R) has the same strength ¢, = 0.2 with
$o,c = 2¢510 — 2, all assumed to be frequency independent. The outgoing light on the right-hand
side of the multilayer metamaterial is measured with a balanced homodyne detector, shown within
the dashed box, which is assumed to co-rotate with the exit angle.

We will compare predictions of the homodyne signal made with the exact multilayer
theory and with the two effective theories. For the multilayer theory, we can insert into
Equation (45) the classical multilayer matrix T, (k, w) of Equation (25a) and the multilayer
noise flux <F[;r 4 (k,w) Fy, 1 (K, w'))exact of Equation (A19) again. In both effective theories,
on the other hand, the exact matrix coefficients of the input-output matrix are to be replaced
by the corresponding elements of the effective matrix Tes of Equation (28). Furthermore,
in the effective-index theory the noise photon flux is given by Equation (39), while in the
QOEM theory it is given by Equation (33).
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In Figure 7, we compare the output squeezing spectrum predicted with the three
theories, all for T = 0, at an angle of 30 degrees away from the normal. In Figure 8, we
show the same for an output angle of 60 degrees. For simplicity, we take the squeezing
strengths ¢ (k, w), {5 (k, w) and phases ¢, ¢, ¢,,; to be constant in the depicted frequency
interval. We observe that the output squeezing spectrum is sensitive not only to the
local-oscillator phase but also to the angle of incidence and the polarization. For this
loss-compensated multilayer, the output squeezing spectrum shows a maximum exceeding
unity in the vicinity of the resonance frequency. Noise photons destroy the squeezing
property of the input field such that the output state will not at all be squeezed for most
local-oscillator frequencies in the interval [0.5wy, 1.5wp] shown in the figures. By contrast,
in the same frequency interval, the quantum optical effective-index theory predicts the
output light to be squeezed for almost all local-oscillator frequencies. In other words,
the output state of light of the loss-compensated material is considerably noisier than that
of the homogeneous slab with the same B,. Thus, Figures 7 and 8 clearly illustrate the
failure of the quantum optical effective-index theory for loss-compensated metamaterials.
In Ref. [59], this failure was already established for normal incidence, and here we see
that the agreement does not improve when detecting under an angle. The more important
message from the figures is the very good agreement between the exact theory and QOEM
effective theory that we generalized in this work, not only for normal incidence but now
also under an angle, and both for s- and for p-polarized light. Small numerical differences
between the exact theory and the QOEM theory occur only close to resonance and only for
large incident angles.

The colors of the frequency intervals in Figures 7 and 8 label net loss and net gain,
exactly as before in Figures 3 and 4. When loss is exactly compensated by gain, we saw in
these earlier figures that N ,(k, w, T) diverges while the output intensity was continuous.
Here, in Figures 7 and 8, we see that, likewise, in homodyne detection the output variance
is still continuous at those frequencies where Neg (k, w, T) diverges.

Finally, in Figure 9, we study how the number of unit cells affects the output variance.
We see that for both polarizations, the output variance grows with the number of unit cells.
In addition, the differences in the predicted output variances within the exact multilayer
theory and QOEI theory grow as the number of layers is increased.

1.4F [ T ] 7 1.5

o
T

output variance
output variance

—
T

Figure 7. (Color online) For squeezed light incident at an angle of 6 = 30° onto a loss-compensated
multilayer metamaterial, a comparison of the predicted variances (44) as would be measured in
balanced homodyne detection at a detection angle of also 30°. The metamaterial and the input states
are described in Figure 6. Predictions with exact multilayer theory (blue solid line) are compared
with the quantum optical effective-index theory (green dash-dotted) and quantum optical effective-
medium theory (red dashed), for s-polarized input states of light in panel (a) and for p-polarization
in (b).
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Figure 9. Same as Figure 7 but now for three different numbers of unit cells: M = 3,6,9, in panel
(a) for s-polarized and in (b) for p-polarized light. The three lowest curves describe QOEI theory,
with the largest variation belonging to M = 9. The three pairs of almost overlapping curves belong
to M = 3 (lower pair), M = 6 (middle pair), and M = 9 (upper pair). Each pair contains the exact
multilayer theory (solid lines) with QOEM theory (dashed lines).

9. Discussion and Conclusions

We studied the propagation of quantum states of light through metamaterials, and
showed that also in quantum optics an effective description of layered metamaterials can
be given, for any angle of incidence and polarization. Quantum noise due to material
loss or gain has an influence on the quantum states of light. We showed that for some
metamaterials the effective index suffices to describe the quantum noise, while in other
cases an additional effective-medium parameter is needed, namely, the effective noise-
current density.

We tested our quantum optical effective-index theory (one effective parameter) and
quantum optical effective-medium theory (two parameters) by calculating spectra and
comparing with a full description of the multilayer metamaterial. For loss-compensated
metamaterials, the gain regions emit noise photons, not described by the effective-index
theory, that do affect the spectra. They have a similar effect on balanced homodyne
detection measurements. We showed that our quantum optical effective-medium theory
describes both the spectra and the homodyne signal well.

For normal incidence, we found earlier that the quantum noise of passive metamateri-
als can be described in terms of the effective index, and loss-compensated metamaterials
require the additional parameter. We now found that this also holds exactly for s-polarized
light at all angles of incidence, but for p-polarized light the additional parameter is also
needed for passive systems. For all angles of incidence and polarizations, we derived
expressions for the new effective parameter.

Our results can be readily generalized to magnetic layered metamaterials. For meta-
materials not composed of multilayers, more work would be needed to derive the effec-
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tive noise current density. Metasurfaces with gain will similarly require a description in
quantum optics that describes the quantum noise associated with the gain. Another inter-
esting open question is whether the current effective-medium theories suffice to describe
higher-order measurements, for example bunching or anti-bunching in intensity correlation
measurements, for quantum states of light that propagated through metamaterials.
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Appendix A. Green Function for Multilayers with Gain and Loss

Without repeating the derivation, we present the result of Ref. [76], namely, the classical
Green function of a multilayer medium with both gain and loss. This is a generalization of
the result by Tomas for lossy dielectric multilayers [85], whose notation we will follow. We
also address some subtleties arising only for media with gain.

The Green function G(x,x’,w) was introduced in Section 2. For multilayer media,
it is convenient to write it in the same mixed Fourier representation as is done for the
electric-field operator in Section 3:

G(x,X,w) = % /dzkeik'(p*pl)G(k,z,z’,w). (A1)

Here, the Green tensor G(k,z,z/,w) assumes two different forms, depending on
whether z and 2’ are located in the same layer or not. For 2’ in layer j it is given by [76,85]

Gk 27, w) 1 5 Nt + i i‘: P (A22)
2,7, w) = —=68(z—7')%2 . a
27rk]2 anp; =7 Dl

X [Saj)> (k, w;z)é’(gjl(—k, w;Z)0(z - 2') + €Uj)< (k, w;z)é’ajl(—k, w;z")0(z' —z)], z alsoinlayer j
(k2o p tg/jei(ﬁjdj+/3;zdn) Aob

,2,2,W) = - 9
( ) 47Tﬁ” o=s 7 sz ( )

(n) ) . n) : ‘
Loz B i2) o) (iwi@(n - ) + E=BE ) (1w @( )], 2 inlayern #
D;'! D,
where s = —1, {, = 1, and O(z) is the usual unit step function, and

e (owz) = el (@il 4ol el)) (e il (A3a)
e (kw;z) = eV (e 7 41 el ()elfr. (A3b)
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Here, o stands for s- or p-polarization, and eg)i = (kx 2)and eg )i = (k2 + ,3]12)

j
are the polarization vectors for s- and p-polarized waves propagating in the positive-

/negative-z direction, where k; = w?e j(w) /c? = k;- + ik}’ and

Bilk,w) = \fej(w)w? /2 — 12 = B +if] (A4)

is the normal component of the wave vector in layer jth and k the in-plane wave vector.
Other quantities in Equations (A2) that still need to be defined are

D{, = 1-7 7’{7, +€21/5fdf, (A5a)

o,—

DY = 1—yf TR, (A5b)

where r{,,_ and r{',,  are the Fresnel coefficients for reflection at the left/right boundary of

layer j. In addition, tg/ Jand rg/ I are the transmission and reflection coefficients between
the layers n and j.

The Green function (A2) is hereby defined, but not yet automatically well-defined:
it is a known issue that the normal component of the wave vector Equation (A4) for
active multilayer media is not automatically well defined even if the refractive index is
well-defined: although the refractive index has no branch points in the upper half-plane
because of causality, B;(k, w) may have branch points there [91]. If so, one can observe two
types of absolute and convective instabilities [92,93], which, respectively, correspond to the
exponential growth of the field amplitude in time at a certain spatial point and blowing up
the electromagnetic energy with time along the propagation direction. Therefore, B;(k, w)
looses its usual physical interpretation as the propagation constant in the normal direction.
In this manner, electromagnetic waves can propagate an infinite distance perpendicularly
to the z-axis, and, therefore, pick up an infinite amount of gain, before arriving at any other
plane z = const. These instabilities could be eliminated by making use of an active medium
with a very high threshold gain and also limiting the extent of the active medium in the
transverse direction. Unlike Refs. [91-93], we here focus on the system dynamics in stable
regimes and only consider active media without branch points where ;(w) is meaningful
for real frequencies. In that case, the signs of ﬁ; and ,33’ are identical to those of Re[e;(w)]

and Im[e;(w)], respectively (see Refs. [91-93]).

Appendix B. Langevin Equations for Amplitude Operators

On the one hand, the electric-field operator is expressed in Equation (22) in terms of
the amplitude operators. On the other hand, it can be expressed in terms of the Green
function of the medium, analogous to Equation (19). By equating the two expressions and
using the explicit expression for the Green function of a multilayer medium as given in

Appendix A, it follows that the z-dependence of the amplitude operators ag,)i (z,k,w) is

governed by quantum Langevin equations

aa((fj;)i(z,k,w)

V2B
o )+ f’ P ) (2, w), (A6)

= :FIB;/ ay,)i (Z, k,w

so that the operators 4, (z,k, w) and a;}’, (z/,k, w) for different space points within the
same jth layer are related as

() ()

a((T];)i (Z, k,w) _ e¥ﬁ;/(z—z/)a((7];)i (ZI, K, w )

2|ﬁ/’/| Ui sal 1 .
) ii”i] eﬂ%fz/zdz" e TP f(]) (z",k,w). (A7)
Z/
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Here, the f;{)i(iz’ Jw) = fU)(+2,k,w) - ((T)i(k) are bosonic field operators that
play the role of fundamental variables of the electromagnetic field and medium, and
f0)(+2',k, w) is the partial Fourier transform of f(x, w) in layer j of Equation (19). They
satisfy the commutation relations

£z k), 1 (K )] = olfsenley ()67 8,0r6(z = 2)0(w — ' )a(k — K), (ABa)

£z d @), f11 (20| = ol sgnle 1(@)]65808(2 — 2)d(w — )3k — K'). (A8b)
Here, the coefficient p((rj)i is defined to be equal to unity for s-polarization (i.e., for
o = s), while it is equal to (k% + |,[3]-|2)/|kj|2 for o = p. Notice that the plus and minus
subscripts in this coefficient p((,], )i do not correspond to a propagation direction, but rather
to two identical (+) and opposite (—) propagation directions.
Special Cases: Incoming Fields—The amplitude operators of the incoming fields
(1) 4 (z,k,w) and a(NH) (z,k, w) in Equation (23) are defined within the space intervals
—o<z< z1 and zy 41 < z < oo, respectively, see the sketch in Figure 1. The explicit forms
of these input operators can be obtained with the use of Equation (A7) as

i (kw) = L\ J2lpl] ez / dz’ e 17 £ (2 K, w), (A9a)

1
1 i N1
V2Bl et [T e Nk w). (a9b)

Appendix C. Three-Step Procedure to Derive Input-Output Operator Relations

a((,ll\l_ﬂ) (z,k,w)

Step 1.—The first step is readily found by realizing that Equation (A7) for z = z; can
be written in matrix form as

o)l ) k)
=R/ + , (A10)
ﬂ(g{l(Zj,k,W) a{(f]/l (ijl/k/w) C((T]’),(k,a))
where R( Disa diagonal 2 x 2 matrix with R( )1 =1/ R = ¢ P/%. The quantum noise

operators in this matrix Equation (A10) are given by

i 2|ﬁ //| 11 Zji sl .
Ik w) =+ L TF / Dz TP ) (2K w), (A11)
" i - .
and, evidently, these inhomogeneous terms in the matrix relation (A10) are the qualitative
novelty as compared to the standard transfer-matrix analysis of multilayer media in classical
electrodynamics. Recalling the commutation relations (A8), the operators c((,], )i (k, w) are
found to satisfy the commutation relations

D), L @] = 200 e sinh(B]d)) b
x6(w —w)o?(k—K), (A12a)
ﬁ// 7) 1Bl (z;+z
{t(f) (k w) (>;(k//wl>} = ‘Bl PU’— iﬁ]( i+zi-1)

x sin(Bld;) 6pr6(w — w)6*(k = K').  (A12b)

Step 2.—In the second step, we relate the operators at(f; il) (z]-, k,w) and 11((,]; )i (Z]-, k, w)

in neighboring layers across the interface at z; to each other using the form Equation (A2)
for the Green function G(k, z,z’, w) for positions z,z" in neighboring layers. This Green
function already, by construction, respects the Maxwell boundary conditions that the



Nanomaterials 2023, 13, 291

26 of 31

(Bj+1Ko,j/j+1 + Bi¥ojv1/j)e

F

/
j+1

(Bjt1%o,j/ji+1 — Bi¥a,jt1/j)e

tangential components of the electric and magnetic fields be continuous. We obtain the
operator matrix relation

- .
a,(f{i )(z]-,k,w) 0 agllr(zj,k,w)
=S ) (A13)
) q )
a((,]il)(z]-,k,w) a((T]’)f (z]-,k,w)

()

which also holds for classical amplitudes and where the matrix Sy’ is given by

i(ﬁ}fﬁ;url)zj 7i(ﬁ;‘+ ;‘+1)Zj

(Bj+1Ko,j/j+1 — Bi¥ojv1/j)e
, (A14)

i(‘B}+‘B}+1)Z]' 71(.3;‘7ﬂ;‘+1)2j

(Bj+1Ko,j/j+1 + Bike j+1/j)e
inwhich /41 = land «p /i1 = kj/kji1.

Step 3.—In the third, final step, we invoke Equations (A10) and (A13) alternatingly
and repeatedly, until we finally obtain the operator of the outgoing fields to the leftmost
and rightmost layers, respectively, afjl (z1,k, w) and agjl) (zn, k, w), in terms of the two

incoming fields a(gi (z1,k, w) and at(,{\]_ﬂ) (zn,k, w), as well as the noise fields. The sought

input-output relation for the amplitude operators is thereby obtained as Equation (23) of
the main text.

Appendix D. Methods to Obtain Classical Effective Parameters

Scattering method.—The scattering method developed by Smith and coworkers [11,12,18]
has proved extremely useful. The idea is to fit the scattering properties of a metamaterial
by those of a homogeneous medium, with values for the effective parameters that give
the best fit. Finding equivalent bulk parameters in this way is solving an inverse problem.
This approach has been generalized to oblique incidence [16] by assuming that the effective
medium can be fully characterized by B¢, the wave-vector component in normal direction
(here: 2-direction). In fact, for oblique incidence, there is no need to introduce the effective
refractive index because all details of wave propagation follow from this parameter S.
What is more, the refractive index may lose its physical meaning and may even become
discontinuous, due to the branch cut of the complex square root [16,94]. By retrieving the
normal wave vector component B¢ and the generalized impedance Zeg , = Beff, o/ €7 from
the reflection and transmission coefficients (29a) and (29b) of a homogenous medium with
thickness L, the effective wave parameters for both polarizations s and p are derived as

1—12, +4£2
ﬁ&ﬁL—iumm<§y‘ﬂ“, (Al5a)
eff, o
T ff, o — 1 2 _ t/z
Zet o = +Po et =1 = lerp (A15b)

(retto +1)2 =13,
where t/eff, » = Top1exp(ifoL) is the modified transmission amplitude and the signs +
are chosen independently based on physical considerations [16]. In general, the multiple
branches associated with the inverse cosine of Equation (A15a) make the unambiguous
determination of the normal wave vector component B , difficult [18]. However, the am-
biguity will not arise in our calculations since, for simplicity, we only consider situations
where the wavelength within the medium is much larger than the multilayer length L.

Dispersion method.—Alternatively one can identify values for effective parameters
using the dispersion method: the effective parameters of a periodic bi-layer system with
permittivity functions e,(w), &,(w) and thicknesses d, j, are obtained from the Bloch dis-
persion relation
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Feff,a— (k, w) =

Fett o4 (k,w) =

,Ba,a + IBb,(r
ﬁb,a ;Ba,a

in the long-wavelength limit. We describe s- and p-polarized light at the same time, since
Bjc stands for B; = B; and B; , for B;/¢;, while d equals the total thickness d, + d}, of the
two bi-layers. By taking the Taylor expansion near the point (w, k) = (0,0), we obtain the
dispersion relation

cO5( B o) = cos( ) cos( ) 5 ( ) sin(Bads)sin(p) (A6

2 2 w?
Pett,s T K = eft, 1 7 (A17a)
B2 2 2
e, Y (A17b)
Ceff, | Eeff, || ¢

in terms of two important effective parameters, namely, €e¢f | = (€ada + €pdp)/d and
€eff, | = (€a€pd)/ (epda + €adp). The subscripts L and || denote the directions perpendicular
and parallel to the optical axis, which is here the z-axis, i.e., the optical axis points along
the surface normal. Thus, the multilayer metamaterial effectively behaves as a uniaxial
anisotropic medium [95] with the effective permittivity tensor & = diag(ecfs, 1, €eff, 1, Ecff, I ),
where eqf;, | (€, I ) refers to the ordinary (extraordinary) permittivity of the effective medium.
Since the in-plane wavevector k is conserved outside and inside the effective medium,
it yields kK? = w?sin®0/c? = wzseff, s sin? B/ c? and ﬁgff, s = (A]zseﬂf, 5082 Bg/ c? for s-
polarization, where 8¢ is the refracted angle inside the effective medium. Similar identities
can be obtained for p-polarized light. Bearing these in mind, one can use Equation (A17) to
write the effective dielectric functions for s- and p-polarized light in terms of the perpen-
dicular and parallel effective permittivity functions. This gives eqff s = €¢5r, | for ordinary
waves, which is angle-independent, and 5&} p (Bost) = OS2 Oegs/ Eeff, | T+ sin? B¢/ Eeff, | for
extraordinary waves. The latter exhibit a strong angle dependence varying from e | to
Ecff, || AS Oeff 1S varied from 0° to 90°. Remarkably, ¢, , can also be written in terms of the

incident angle 6 as e, (0) = ecf, | + sin? 0(1 — eef, 1/ e, |)-

Appendix E. Quantum Noise Operators in QOEI Theory

The input-output relations (27) of QOEI theory feature two quantum noise terms
Feft o+ (k, w). These represent quantum noise associated with loss and gain and combina-
tions thereof inside this effective medium. The right- (+) and left-going (—) components
are given by

—Ziﬁg \/zﬁfeff,(r cle/ff,aea/lgé)

(Bett, o + €0B0)? — (Bett,o — €7B0)? €Xp [2iBef, o L]

L . /
+ (Bt — eabo) [ dZePe fuy (2K w)), (AlSa)

—2ifo \/2,323&, mB/e/ff,g—e(T/lBé exp [i(Bo — PBett, o) L]

L ] ,
(Bt cop) [ e 80 g (o)

(:Beff,a + 60.30)2 - (:Beff,a - eUﬁO)z exp [Ziﬁeff, oL

. L o
+ (Befr,r — €sBo) e Petiot /0 dz' e Peito® e (2, k/w)) , (A18b)

L s /
] ((,Beff,a + €Bo) /0 dz'ePeito? foee, (2, k,w)

in terms of the fundamental bosonic operators f that were introduced in Section 2 and which,
in an effectively homogeneous layer, satisfy the commutation relations (A8) in which ¢ is to
be replaced by the effective permittivities e , that are given in the previous Appendix.

Appendix F. Flux of Noise Photons at T # 0

By combining the expression (38) for the noise power spectrum with the input-output
relations of the exact multilayer theory, in particular Equations (A11) and (24), we ob-
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tain the following exact expression for the flux of noise photons emitted from the loss-
compensated multilayer

(L (k@) Fpr y (K, @) Jexact = 22{&& sinh(B/d;)sgnle ()] (DY, 271 + DY, 26 (A19)

) L
B ﬁ]’ P[(,]), sm(ﬁ] )(DL(TJZl (;2eﬁj(zj+zj_l)+]D((7]%11D)((T];2e ﬁJ(ZJJrZJ—l))

X (Nin(w, T)®lej, 1 (w)] + (Nen(w, [T]) +1)O[—¢),1(w)]) S5 d(w — w')é(k — K).

This formula is valid for all temperatures, and is used to produce Figures 3-5, 7 and 8.
For loss-compensated metamaterials at zero temperature, the angle-dependent power
spectrum is given by

N
—hwdsing 22! 2j+1 (2j+1)2 —B. .d 2j+1 o d
spone(0,w) = e Y. {QEIL— )Smh(ﬁz]H )(|Daél e~ Pt 4 DY 26P50 g)
=1

1
Y L i) (DD o v
2j+1

+DF DY e P Bt } (A20)
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